Publications by authors named "Olatz Guaresti"

Article Synopsis
  • New research shows that cancer growth is affected by how stretchy and flexible tissues are, not just how stiff they are like people used to think.
  • Current cancer studies mainly focus on stiffness and need to explore these new insights to help in diagnosing and treating cancer better.
  • Scientists are using special gels to mimic body tissues and study how their stretchy properties affect cancer cells, which could lead to better ways to test and treat cancer.
View Article and Find Full Text PDF

This work identifies and describes different material-scaffold geometry combinations for cartilage tissue engineering (CTE). Previously reported potentially interesting scaffold geometries were tuned and printed using bioresorbable polycaprolactone and poly(lactide-b-ethylene) block copolymer. Medical grades of both polymers were 3D printed with fused filament fabrication technology within an ISO 7 classified cleanroom.

View Article and Find Full Text PDF

Nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) was successfully used to cross-link complementary tetrazole and maleimide chitosan derivatives into hydrogel networks using irradiation. The photo-click reaction resulted in the formation of robust fluorescent hydrogels with an emission signal at around 530 nm. The degree of cross-linking and the resulting hydrogel properties such as pH sensitivity and swelling were influenced by the tetrazole/maleimide ratio and the length of irradiation.

View Article and Find Full Text PDF

Thermosensitive hydrogels based on polysaccharides are suitable candidates for the design of biodegradable and biocompatible injectable drug delivery systems. Thus, the combination of chitosan (CHI) and β-glycerol phosphate disodium salt (β-GP) has been intensively investigated to develop thermo-induced physical gels. With the aim of exploring the possibilities of optimization of these hydrogels, in this work, chitosan, β-GP and naturally extracted crosslinking agent, genipin (GEN), have been successfully combined, obtaining co-crosslinked hydrogels with both in situ physical and covalent crosslinking.

View Article and Find Full Text PDF

Starch-based nanocomposite hydrogels were successfully prepared by the Diels-Alder click cross-linking reaction between furan-functionalized starch derivative and a water-soluble tetrafunctional maleimide compound, adding cellulose nanocrystals (CNC) as nanoreinforcement. The effect of increasing the CNC content on rheological and swelling properties as well as on the morphology of the hydrogels was analyzed. Besides, in order to evaluate the applicability of the as-prepared hydrogels as delivery systems, drug release measurements and in vitro cytotoxicity assays were also performed.

View Article and Find Full Text PDF

This study has been carried out to design novel, environmentally friendly membranes by in situ and ex situ routes based on bacterial cellulose (BC) as a template for the chitosan (Ch) as functional entity for the elimination of copper in wastewaters. Two routes led to bionanocomposites with different aspect and physico-chemical properties. The mechanical behaviour in wet state, strongly related to crystallinity and water holding capacity, resulted to be very different depending on the preparation route although the Ch content was very similar: 35 and 37 wt% for the in situ and ex situ membranes, respectively.

View Article and Find Full Text PDF