Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ.
View Article and Find Full Text PDFThe digital divide in Europe has not yet been bridged and thus more contributions towards understanding the factors affecting the different dimensions involved are required. This research offers some insights into the topic by analyzing the e-Government adoption or practical use of e-Government across Europe (26 EU countries). Based on the data provided by the statistical office of the European Union (Eurostat), we defined two indexes, the E-Government Use Index (EGUI) and an extreme version of it taking into account only null or complete use (EGUI+), and characterized the use/non use of e-Government tools using supervised learning procedures in a selection of countries with different e-Government adoption levels.
View Article and Find Full Text PDFObjective: To characterise the use of an electronic medication safety dashboard by exploring and contrasting interactions from primary users (i.e. pharmacists) who were leading the intervention and secondary users (i.
View Article and Find Full Text PDFThe monitoring of small houses and rooms has become possible due to the advances in IoT sensors, actuators and low power communication protocols in the last few years. As buildings are one of the biggest energy consuming entities, monitoring them has great interest for trying to avoid non-necessary energy waste. Moreover, human behaviour has been reported as being the main discrepancy source between energy usage simulations and real usage, so the ability to monitor and predict actions as opening windows, using rooms, etc.
View Article and Find Full Text PDF