(1) Background: Liver metastases (LM) are the leading cause of death in colorectal cancer (CRC) patients. Despite advancements, relapse rates remain high and current prognostic nomograms lack accuracy. Our objective is to develop an interpretable neoadjuvant algorithm based on mathematical models to accurately predict individual risk, ensuring mathematical transparency and auditability.
View Article and Find Full Text PDFPurpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions.
View Article and Find Full Text PDF