Publications by authors named "Olas J"

The timing of flowering in plants is modulated by both carbon (C) and nitrogen (N) signaling pathways. In a previous study, we established a pivotal role of the sucrose-signaling trehalose 6-phosphate pathway in regulating flowering under N-limited short-day conditions. In this work, we show that both wild-type Arabidopsis (Arabidopsis thaliana) plants grown under N-limited conditions and knock-down plants of TREHALOSE PHOSPHATE SYNTHASE 1 induce FLOWERING LOCUS C (FLC) expression, a well-known floral repressor associated with vernalization.

View Article and Find Full Text PDF

Objective: Our objective was to test the hypothesis, in a double-blind, placebo-controlled study that vipoglanstat, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1) which decreases prostaglandin E2 (PGE2) and increases prostacyclin biosynthesis, improves RP.

Methods: Patients with systemic sclerosis (SSc) and ≥7 RP attacks during the last screening week prior to a baseline visit were randomised to four weeks treatment with vipoglanstat 120 mg or placebo. A daily electronic diary captured RP attacks (duration and pain) and Raynaud's Condition Score, with change in RP attacks/week as primary end point.

View Article and Find Full Text PDF

The shoot apical meristem (SAM) is responsible for overall shoot growth by generating all aboveground structures. Recent research has revealed that the SAM displays an autonomous heat stress (HS) memory of a previous non-lethal HS event. Considering the importance of the SAM for plant growth, it is essential to determine how its thermomemory is mechanistically controlled.

View Article and Find Full Text PDF

Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood.

View Article and Find Full Text PDF

Although several large-scale single-cell RNA sequencing (scRNAseq) studies addressing the root of Arabidopsis (Arabidopsis thaliana) have been published, there is still need for a de novo reference map for both root and especially above-ground cell types. As the plants' transcriptome substantially changes throughout the day, shaped by the circadian clock, we performed scRNAseq on both Arabidopsis root and above-ground tissues at defined times of the day. For the root scRNAseq analysis, we used tissue-specific reporter lines grown on plates and harvested at the end of the day (ED).

View Article and Find Full Text PDF

Absorption, fluorescence, and phosphorescence spectra of single crystals of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and BTBT dispersed in frozen n-nonane, n-hexadecane, and dichloromethane matrices were studied at 5 K. Observation of a new absorption band and related changes in the fluorescence to phosphorescence intensity ratio, when the concentration of BTBT in the matrix increased above 10M, indicated the presence of BTBT aggregates. Quantum-chemistry calculations performed for the simplest aggregate, isolated dimer, showed that its structure is similar to the "herringbone" element in the BTBT crystal unit cell and the lowest electronic excited singlet state of the dimer has the intermolecular charge-transfer character.

View Article and Find Full Text PDF

Acenes, polyaromatic hydrocarbons composed of linearly fused benzene rings have received immense attention due to their performance as semiconductors in organic optoelectronic applications. Their appealing physicochemical properties, such as extended delocalization, high charge carrier mobilities, narrow HOMO-LOMO gaps and partially radical character in the ground state make them very attractive targets for many potential applications. However, the intrinsic synthetic challenges of unsubstituted members such as high reactivity and poor solubility are still limiting factors for their wider exploitation.

View Article and Find Full Text PDF

In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thaliana displays an autonomous heat-stress (HS) memory of a previous non-lethal HS, allowing the SAM to regain growth after exposure to an otherwise lethal HS several days later.

View Article and Find Full Text PDF

Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops.

View Article and Find Full Text PDF

Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins.

View Article and Find Full Text PDF

Drought represents a major threat to plants in natural ecosystems and agricultural settings. The biostimulant Super Fifty (SF), produced from the brown alga , enables ecologically friendly stress mitigation. We investigated the physiological and whole-genome transcriptome responses of to drought stress after a treatment with SF.

View Article and Find Full Text PDF

Metabolites influence flowering time, and thus are among the major determinants of yield. Despite the reported role of trehalose 6-phosphate and nitrate signaling on the transition from the vegetative to the reproductive phase, little is known about other metabolites contributing and responding to developmental phase changes. To increase our understanding which metabolic traits change throughout development in Arabidopsis thaliana and to identify metabolic markers for the vegetative and reproductive phases, especially among individual amino acids (AA), we profiled metabolites of plants grown in optimal (ON) and limited nitrogen (N) (LN) conditions, the latter providing a mild but consistent limitation of N.

View Article and Find Full Text PDF

In flowering plants, sugars act as carbon sources providing energy for developing embryos and seeds. Although most studies focus on carbon metabolism in whole seeds, knowledge about how particular sugars contribute to the developmental transitions during embryogenesis is scarce. To develop a quantitative understanding of how carbon composition changes during embryo development, and to determine how sugar status contributes to final seed or embryo size, we performed metabolic profiling of hand-dissected embryos at late torpedo and mature stages, and dormant seeds, in two accessions with medium [Columbia-0 (Col-0)] and large [Burren-0 (Bur-0)] seed sizes, respectively.

View Article and Find Full Text PDF

Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature.

View Article and Find Full Text PDF

In Arabidopsis (), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from , under the control of the promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status.

View Article and Find Full Text PDF

Background: Systemic sclerosis-associated interstitial lung disease (ILD) carries a high mortality risk; expert guidance is required to aid early recognition and treatment. We aimed to develop the first expert consensus and define an algorithm for the identification and management of the condition through application of well established methods.

Methods: Evidence-based consensus statements for systemic sclerosis-associated ILD management were established for six domains (ie, risk factors, screening, diagnosis and severity assessment, treatment initiation and options, disease progression, and treatment escalation) using a modified Delphi process based on a systematic literature analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Plant growth is a complex biological process influenced by multiple biochemical and signaling pathways, shaped by the interaction between genetics and the environment.
  • Researchers often simplify the concept of growth to mean an increase in size, changes in cell structure, or biomass, which can vary based on the measurement technique used.
  • This review covers the mechanisms of plant growth, discusses advanced measurement techniques (including both imaging and non-imaging methods), their pros and cons, and proposes a standardized terminology for describing growth rates based on these techniques.
View Article and Find Full Text PDF

Nitrogen (N) is an essential macronutrient for optimal plant growth and ultimately for crop productivity Nitrate serves as the main N source for most plants. Although it seems a well-established fact that nitrate concentration affects flowering, its molecular mode of action in flowering time regulation was poorly understood. We recently found how nitrate, present at the shoot apical meristem (SAM), controls flowering time In this short communication, we present data on the tissue-specific expression patterns of and .

View Article and Find Full Text PDF

In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility.

View Article and Find Full Text PDF

Optimal timing of flowering, a major determinant for crop productivity, is controlled by environmental and endogenous cues. Nutrients are known to modify flowering time; however, our understanding of how nutrients interact with the known pathways, especially at the shoot apical meristem (SAM), is still incomplete. Given the negative side-effects of nitrogen fertilization, it is essential to understand its mode of action for sustainable crop production.

View Article and Find Full Text PDF

Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox).

View Article and Find Full Text PDF