The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu β decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values.
View Article and Find Full Text PDFA narrow near-threshold proton-emitting resonance (E_{x}=11.4 MeV, J^{π}=1/2^{+}, and Γ_{p}=4.4 keV) was directly observed in ^{11}B via proton resonance scattering.
View Article and Find Full Text PDFWe have performed the first direct measurement of the ^{83}Rb(p,γ) radiative capture reaction cross section in inverse kinematics using a radioactive beam of ^{83}Rb at incident energies of 2.4 and 2.7A MeV.
View Article and Find Full Text PDFThe ^{80}Ge structure was investigated in a high-statistics β-decay experiment of ^{80}Ga using the GRIFFIN spectrometer at TRIUMF-ISAC through γ, β-e, e-γ, and γ-γ spectroscopy. No evidence was found for the recently reported 0_{2}^{+} 639-keV level suggested as evidence for low-energy shape coexistence in ^{80}Ge. Large-scale shell model calculations performed in ^{78,80,82}Ge place the 0_{2}^{+} level in ^{80}Ge at 2 MeV.
View Article and Find Full Text PDFIn this work, a new method of range verification for proton therapy (PT) is experimentally demonstrated for the first time. If a metal marker is implanted near the tumour site, its response to proton activation will result in the emission of characteristic γ rays. The relative intensity of γ rays originating from competing fusion-evaporation reaction channels provides a unique signature of the average proton energy at the marker, and by extension the beam's range, in vivo and in real time.
View Article and Find Full Text PDFThe elusive β^{-}p^{+} decay was observed in ^{11}Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber in an experiment performed at ISAC-TRIUMF. The measured β^{-}p^{+} branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in ^{11}B above the proton separation energy.
View Article and Find Full Text PDF