Publications by authors named "Olafur H Fridjonsson"

The thermophilic bacterium Rhodothermus marinus has mainly been studied for its thermostable enzymes. More recently, the potential of using the species as a cell factory and in biorefinery platforms has been explored, due to the elevated growth temperature, native production of compounds such as carotenoids and EPSs, the ability to grow on a wide range of carbon sources including polysaccharides, and available genetic tools. A comprehensive understanding of the metabolism of cell factories is important.

View Article and Find Full Text PDF

The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides.

View Article and Find Full Text PDF

Sustainably produced renewable biomass has the potential to replace fossil-based feedstocks, for generation of biobased fuels and chemicals of industrial interest, in biorefineries. In this context, seaweeds contain a large fraction of carbohydrates that are a promising source for enzymatic and/or microbial biorefinery conversions. The thermoanaerobe Thermoanaerobacterium AK17 is a versatile fermentative bacterium producing ethanol, acetate and lactate from various sugars.

View Article and Find Full Text PDF

Production of fish meal and plant-based feed proteins continues to increase to meet the growing demand for seafood, leading to impacts on marine and terrestrial ecosystems. Microbial proteins such as single-cell proteins (SCPs) have been introduced as feed alternatives since they can replace current fish feed ingredients, e.g.

View Article and Find Full Text PDF

This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional.

View Article and Find Full Text PDF

Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L--hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L- configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers.

View Article and Find Full Text PDF

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%).

View Article and Find Full Text PDF

This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media.

View Article and Find Full Text PDF

Red-pigmented strains of non-sporeforming, aerobic, chemoorganotrophic bacteria were isolated from intertidal hot springs in Laugarvík, NW-Iceland. Cells stained Gram-negative and formed pleomorphic rods that often had swollen ends and occurred singly or in filaments. Growth was observed at 40-65 °C (optimum at 60 °C), pH 6-9 (optimum at 6.

View Article and Find Full Text PDF

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms.

View Article and Find Full Text PDF

has the potential to be well suited for biorefineries, as an aerobic thermophile that produces thermostable enzymes and is able to utilize polysaccharides from different 2nd and 3rd generation biomass. The bacterium produces valuable chemicals such as carotenoids. However, the native carotenoids are not established for industrial production and needs to be genetically modified to produce higher value carotenoids.

View Article and Find Full Text PDF

The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases.

View Article and Find Full Text PDF

Background: The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production.

View Article and Find Full Text PDF

Background: The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others.

View Article and Find Full Text PDF

The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated.

View Article and Find Full Text PDF
Article Synopsis
  • The thermophile Rhodothermus marinus is capable of producing extracellular polysaccharides (EPSs) that create a unique cellular capsule.
  • Research focused on two strains, DSM4252 and MAT493, revealed that EPS production occurred in both exponential and stationary growth phases, with maltose enhancing production during exponential growth and lactose doing so in the stationary phase.
  • The study found that the EPSs were heteropolymeric with specific monosaccharides, and FT-IR analysis indicated the presence of various functional groups, highlighting that R. marinus produces distinct sulfated EPS rich in arabinose and xylose.
View Article and Find Full Text PDF

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (β1→3) linkages preferably and to a lesser extent (β1→6) or (β1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation.

View Article and Find Full Text PDF

Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs).

View Article and Find Full Text PDF

Streptomyces lividans TK24 is the standard host for the heterologous expression of a number of different proteins and antibiotic-synthesizing enzymes. As such, it is often used as an experimental microbial cell factory for the production of secreted heterologous proteins including human cytokines and industrial enzymes, and of several antibiotics. It accepts methylated DNA and is an ideal Streptomyces cloning system.

View Article and Find Full Text PDF

The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E.

View Article and Find Full Text PDF

Several bacteriophages that infect different strains of the thermophilic bacterium Rhodothermus marinus were isolated and their infection pattern was studied. One phage, named RM378 was cultivated and characterized. The RM378 genome was also sequenced and analyzed.

View Article and Find Full Text PDF

In this study, we present the discovery and characterization of a highly thermostable endolysin from bacteriophage Ph2119 infecting Thermus strain MAT2119 isolated from geothermal areas in Iceland. Nucleotide sequence analysis of the 16S rRNA gene affiliated the strain with the species Thermus scotoductus. Bioinformatics analysis has allowed identification in the genome of phage 2119 of an open reading frame (468 bp in length) coding for a 155-amino-acid basic protein with an Mr of 17,555.

View Article and Find Full Text PDF

AsaP1 is a toxic aspzincin metalloendopeptidase secreted by the fish pathogen Aeromonas salmonicida subsp. achromogenes. The protease is highly immunogenic and antibodies against AsaP1 evoke a passive protection against infection with A.

View Article and Find Full Text PDF

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131(T), was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40-65 °C (optimum 55 °C), the pH range was pH 6.

View Article and Find Full Text PDF