Publications by authors named "Olaf T von Ramm"

Objective: A new visualization and recording method used to assess and quantitate autogenic high-velocity motions in myocardial walls to provide a new description of cardiac function is described.

Methods: The regional motion display (RMD) is based on high-speed difference ultrasound B-mode images and spatiotemporal processing to record propagating events (PEs). Sixteen normal participants and one patient with cardiac amyloidosis were imaged at rates of 500-1000/s using the Duke Phased Array Scanner, T5.

View Article and Find Full Text PDF

The real time high frame rate (HFR) 2-dimensional ultrasound system, T5, at Duke University is capable of imaging at up to 1000 images per second for adult cardiac imaging. A method for detecting and visualizing the mechanical contraction fronts using HFR echocardioagraphy-derived Strain Rate Image (SRI) was described in 26 patients. The Tissue Shortening Onset front durations for echocardiographic normal patients were significantly shorter than conduction disorder patients with left bundle branch block (LBBB) with intrinsic conduction and conduction disorder patients without LBBB (non-LBBB) with simulated LBBB (sLBBB).

View Article and Find Full Text PDF

Recently, we developed a high-frame-rate echocardiographic imaging system capable of acquiring images at rates up to 2500 per second. High imaging rates were used to quantify longitudinal strain parameters in patients with echocardiographically normal function. These data can serve as a baseline for comparing strain parameters in disease states.

View Article and Find Full Text PDF

The study describes a novel algorithm for deriving myocardial strain from an entire cardiac cycle using high-frame-rate ultrasound images. Validation of the tracking algorithm was conducted in vitro prior to the application to patient images. High-frame-rate ultrasound images were acquired in vivo from 10 patients, and strain curves were derived in six myocardial regions around the left ventricle from the apical four-chamber view.

View Article and Find Full Text PDF

We describe an advanced real-time high-speed echocardiographic system with live display while scanning. Images are acquired at rates up to 1000 per second for adult cardiac applications and are stored in computer memory. Images may be played back in slow motion or frame by frame to analyze cardiac motion at the millisecond time scale.

View Article and Find Full Text PDF

Piezoelectric micromachined ultrasound transducer (PMUT) matrix arrays were fabricated containing novel through-silicon interconnects and integrated into intracardiac catheters for in vivo real-time 3-D imaging. PMUT arrays with rectangular apertures containing 256 and 512 active elements were fabricated and operated at 5 MHz. The arrays were bulk micromachined in silicon-on-insulator substrates, and contained flexural unimorph membranes comprising the device silicon, lead zirconate titanate (PZT), and electrode layers.

View Article and Find Full Text PDF

The Live Volumetric Imaging (LVI) catheter is capable of real-time 3D intracardiac echo (ICE) imaging, uniquely providing full volume sectors with deep penetration depth and high volume frame rate. The key enabling technology in this catheter is an integrated piezoelectric micromachined ultrasound transducer (pMUT), a novel matrix phased array transducer fabricated using semiconductor microelectromechanical systems (MEMS) manufacturing techniques. This technology innovation may enable better image guidance to improve accuracy, reduce risk, and reduce procedure time for transcatheter intracardiac therapies which are currently done with limited direct visualization of the endocardial tissue.

View Article and Find Full Text PDF

A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.

View Article and Find Full Text PDF

Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate.

View Article and Find Full Text PDF
Three-dimensional motion measurements using feature tracking.

IEEE Trans Ultrason Ferroelectr Freq Control

April 2008

Feature tracking was developed to efficiently compute motion measurements from volumetric ultrasound images. Prior studies have demonstrated the motion magnitude accuracy and computation speed of feature tracking. However, the previous feature tracking implementations were limited by performance of their calculations in rectilinear coordinates.

View Article and Find Full Text PDF

Real-time, three-dimensional (RT3D) ultrasound allows video frame rate volumetric imaging. The ability to acquire full three-dimensional (3-D) image data in real-time is particularly helpful for applications such as cardiac imaging, which require visualization of complex and dynamic 3-D anatomy. Volume rendering provides a method for intuitive graphical display of the 3-D image data, but capturing the RT3D echo data and performing the necessary processing to generate a volumetric image in real time poses a significant technical challenge.

View Article and Find Full Text PDF

Objective: The purpose of our study was to test the applicability of calculating the difference between left ventricular (LV) and right ventricular (RV) stroke volume (SV) for assessing the severity of aortic (Ao) regurgitation (AR) using a real-time 3-dimensional (3D) echocardiographic (RT3DE) imaging system.

Methods: The Ao valve was incised in 5 juvenile sheep, 6 to 10 weeks before the study, to produce AR (mean regurgitant fraction = 0.50).

View Article and Find Full Text PDF

Background: Real-time 3-dimensional echocardiography (RT3DE) reliably determines intracardiac chamber volumes without left ventricular (LV) geometric assumptions, yet clinical assessment of contractile performance is often on the basis of potentially inaccurate, load-dependent indices such as ejection fraction.

Methods: In 6 chronically instrumented dogs, RT3DE estimated LV volumes at various loading conditions. Preload recruitable stroke work and end-systolic pressure-volume relationships were constructed.

View Article and Find Full Text PDF