Publications by authors named "Olaf Riess"

Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction.

View Article and Find Full Text PDF

The most frequent causes of autosomal dominant (AD) hereditary spastic paraplegias (HSP) (ADHSP) are mutations in the SPAST gene (SPG4 locus). However, roughly 60% of patients are negative for SPAST mutations, despite their family history being compatible with AD inheritance. A mutation in the gene for an acetyl-CoA transporter (SLC33A1) has recently been reported in one Chinese family to cause ADHSP-type SPG42.

View Article and Find Full Text PDF

Familial Parkinson disease (PD) due to the A30P mutation in the SNCA gene encoding alpha-synuclein is clinically associated with PD symptoms. In this first pathoanatomical study of the brain of an A30P mutation carrier, we observed neuronal loss in the substantia nigra, locus coeruleus, and dorsal motor vagal nucleus, as well as widespread occurrence of alpha-synuclein immunopositive Lewy bodies, Lewy neurites, and glial aggregates. Alpha-synuclein aggregates ultrastructurally resembled Lewy bodies, and biochemical analyses disclosed a significant load of insoluble alpha-synuclein, indicating neuropathological similarities between A30P disease patients and idiopathic PD, with a more severe neuropathology in A30P carriers.

View Article and Find Full Text PDF

Purpose: We performed a comprehensive in vivo assessment of retinal morphology and function in cpfl1 (cone photoreceptor function loss 1) mice to better define the disease process in this model of cone dystrophies.

Methods: Mice were examined using electroretinography (ERG), confocal scanning laser ophthalmoscopy (cSLO), and spectral domain optical coherence tomography (SD-OCT). Cross-breeding cpfl1 mutants with mice expressing green fluorescent protein (GFP) under control of red-green cone opsin promoter allowed for an in vivo timeline analysis of number and distribution of cone photoreceptors using the autofluorescence (AF) mode of the cSLO.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.

View Article and Find Full Text PDF

A crucial question in polyQ-induced neurodegeneration is the influence of wild type protein on the formation of aggregates and toxicity. Recently it was shown that non-expanded ataxin-3 protein mitigated neurodegeneration in a Drosophila and mouse model of SCA3. We now explored the effects of overexpressing non-expanded ataxin-3 with 15Q in a SCA3 transgenic mouse model with 70 polyglutamine repeats.

View Article and Find Full Text PDF

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the association of common Omi/HtrA2 variants in the Genetic Epidemiology of Parkinson's disease (GEO-PD) consortium. GEO-PD sites provided clinical and genetic data including affection status, gender, ethnicity, age at study, age at examination (all subjects); age at onset and family history of PD (patients).

View Article and Find Full Text PDF

Each translational approach in medical research forces the establishment of neurobehavioral screening systems, dedicated to fill the gap between postgenomic generation of state-of-the-art animal models (i.e. transgenic rats) on the one hand and their added value for really predictive experimental preclinical therapy on the other.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 is a neurodegenerative disorder caused by the expansion of the polyglutamine repeat region within the ataxin-3 protein. The mutant protein forms intracellular aggregates in the brain. However, the cellular mechanisms causing toxicity are still poorly understood and there are currently no effective treatments.

View Article and Find Full Text PDF

Breast cancer is the most frequent form of carcinoma in European females (incidence 65 per 100,000). In about 10% of all cases, pedigree analysis predicts a hereditary breast-ovarian cancer syndrome (HBOC) to be causative for the disease. Frequently, mutations in two genes, BRCA1 (Chr.

View Article and Find Full Text PDF

We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding alpha-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.

View Article and Find Full Text PDF

Hereditary dystonias in humans are frequently related to a specific mutation of the DYT1 gene that encodes torsinA. This mutation has been shown to disrupt neuronal cell migration during development. We compared adult neurogenesis, occurring in the hippocampus and the olfactory bulb, in transgenic mice overexpressing either the wild-type or mutant form of human torsinA.

View Article and Find Full Text PDF

Altered neuronal activity in the striatum appears to be a key component of Huntington's disease (HD), a fatal, neurodegenerative condition. To assess this hypothesis in freely behaving transgenic rats that model HD (tgHDs), we used chronically implanted micro-wires to record the spontaneous activity of striatal neurons. We found that relative to wild-type controls, HD rats suffer from population-level deficits in striatal activity characterized by a loss of correlated firing and fewer episodes of coincident spike bursting between simultaneously recorded neuronal pairs.

View Article and Find Full Text PDF

Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter.

View Article and Find Full Text PDF

Purpose: To identify individual cone photoreceptors in a transgenic mouse line in vivo based on selective expression of green fluorescent protein (GFP) using cSLO (confocal scanning laser ophthalmoscopy) and to use this approach to monitor cone cell fate in mouse models of retinal degeneration.

Methods: Transgenic mice expressing GFP under the control of a red-green opsin promoter (RG-GFP mice) were analyzed in vivo with respect to GFP expression in cone cells using cSLO and functional integrity using electroretinography (ERG). Histology was performed to correlate the pattern of GFP expression with light microscopic data.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein and its interactor synphilin-1 are major components of these inclusions. Rare mutations in the alpha-synuclein and synphilin-1 genes have been implicated in the pathogenesis of PD; however, the normal function of these proteins is far from being completely elucidated.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is caused by the expansion of a polyglutamine repeat in the ataxin-3 protein. We generated a mouse model of SCA3 expressing ataxin-3 with 148 CAG repeats under the control of the huntingtin promoter, resulting in ubiquitous expression throughout the whole brain. The model resembles many features of the disease in humans, including a late onset of symptoms and CAG repeat instability in transmission to offspring.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a CAG repeat tract that affects the MJD1 gene which encodes the ataxin-3 protein. In order to analyze whether symptoms caused by ataxin-3 with an expanded repeat are reversible in vivo, we generated a conditional mouse model of SCA3 using the Tet-Off system. We used a full-length human ataxin-3 cDNA with 77 repeats in order to generate the responder mouse line.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) or Machado-Joseph disease (MJD) belongs to a group of autosomal dominant neurodegenerative diseases, which are caused by the expansion of a polyglutamine repeat in the affected protein, in this case ataxin-3. Ataxin-3 is mainly localized in the cytoplasm; however, one hallmark of SCA3 is the formation of ataxin-3-containing protein aggregates in the nucleus of neurons. Currently, it is not known how mutant ataxin-3 translocates into the nucleus.

View Article and Find Full Text PDF

Periphilin is involved in multiple processes in vivo. To explore its physiological role from an organismic perspective, we generated mice with a gene trap insertion in the periphilin-1 gene. Based on beta-gal reporter activity, a widespread periphilin expression was evident, especially in the developing somites and limbs, the embryonic nervous system, and the adult brain.

View Article and Find Full Text PDF

To test whether the synucleinopathies Parkinson's disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome-wide association study of Parkinson's disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic inclusions (Lewy bodies). Iron, which is elevated in the substantia nigra (SN) of PD patients, seems to be of pivotal importance, because of its capacity to enhance the amplification of reactive-oxygen species. Therefore, it is tempting that the iron-releasing key enzyme in heme catabolism, heme oxygenase-1 (HO-1), may represent a candidate for a genetic susceptibility to PD.

View Article and Find Full Text PDF

Genomic microarrays have been implemented in the diagnosis of patients with unexplained mental retardation. This method, although revolutionizing cytogenetics, is still limited to the detection of rare de novo copy number variants (CNVs). Genome-wide single nucleotide polymorphism (SNP) microarrays provide high-resolution genotype as well as CNV information in a single experiment.

View Article and Find Full Text PDF

In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic inclusions (Lewy bodies). Iron, which is elevated in the substantia nigra of PD patients, seems to be of pivotal importance, because of its capacity to enhance the amplification of reactive oxygen species. As iron enters and exits the brain via transport proteins in the blood-brain barrier (BBB), these proteins may represent candidates for a genetic susceptibility to PD.

View Article and Find Full Text PDF