The adoption of comprehensive genomic profiling in oncology has rapidly increased the demand for standardized tumor sample processing in diagnostic laboratories. Automation of DNA and RNA library preparation workflows offers the possibility to scale-up and standardize sample processing. We report on the clinical implementation of the automated TruSight Oncology 500 High-Throughput library preparation workflow from formalin-fixed, paraffin-embedded tumor samples using the Biomek i7 hybrid Workstation.
View Article and Find Full Text PDFBackground: The determinants of the response to checkpoint immunotherapy in hepatocellular carcinoma (HCC) remain poorly understood. The organisation of the immune response in the tumour microenvironment (TME) is expected to govern immunotherapy outcomes but spatial immunotypes remain poorly defined.
Objective: We hypothesised that the deconvolution of spatial immune network architectures could identify clinically relevant immunotypes in HCC.
Background: Predictive biomarkers in use for immunotherapy in advanced non-small cell lung cancer are of limited sensitivity and specificity. We analysed the potential of activating KRAS and pathogenic TP53 mutations to provide additional predictive information.
Methods: The study cohort included 713 consecutive immunotherapy patients with advanced lung adenocarcinomas, negative for actionable genetic alterations.
Analysis of selected cancer genes has become an important tool in precision oncology but cannot fully capture the molecular features and, most importantly, vulnerabilities of individual tumors. Observational and interventional studies have shown that decision-making based on comprehensive molecular characterization adds significant clinical value. However, the complexity and heterogeneity of the resulting data are major challenges for disciplines involved in interpretation and recommendations for individualized care, and limited information exists on how to approach multilayered tumor profiles in clinical routine.
View Article and Find Full Text PDFA growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from five participating institutions.
View Article and Find Full Text PDFObjectives: Molecular diagnosis for targeted therapies has been improved significantly in non-small-cell lung cancer (NSCLC) patients in recent years. Here we report on the prevalence of rare fusions in NSCLC and dissect their genomic architecture and potential clinical implications.
Materials And Methods: Overall, n = 5554 NSCLC patients underwent next-generation sequencing (NGS) for combined detection of oncogenic mutations and fusions either at primary diagnosis (n = 5246) or after therapy resistance (n = 308).
Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively. A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping.
View Article and Find Full Text PDFImmunotherapy has become the standard of care in advanced HCC but is only approved in first- or second-line treatment. We report a patient with HCC refractory to several lines of tyrosine kinase inhibitors, who was treated with Ipilimumab and Nivolumab (Ipi/Nivo) as the fourth line. The tumor responded profoundly to Ipi/Nivo.
View Article and Find Full Text PDFIntroduction: Chromosomal aberrations are known to drive metastatic spread, but their profile is still elusive in carcinoma of unknown primary (CUP). Therefore, the aim of this study was to characterize the chromosomal aberration pattern in CUP depending on histological and clinical features and to assess its prognostic impact together with chromothripsis, tumor mutational burden (TMB), microsatellite instability (MSI), and mutational profiles as potential prognostic biomarkers.
Methods: Chromosomal aberrations and chromothripsis were detected by methylation-based copy number variation (CNV) analysis, whereas TMB and MSI were calculated based on large next-generation sequencing (NGS) panels.
Background: Single-site carcinoma of unknown primary (CUP) is recognised as a distinct favourable subtype in the European Society of Medical Oncology (ESMO) classification. There is broad consensus that these patients are candidates for local ablative treatment strategies with surgery and/or radiotherapy, but data on their outcomes are scarce.
Patients And Methods: In this study, we have addressed the prospects of cure and prognostic factors in a retrospective cohort of 63 patients who were eligible for local treatment at our centre.
Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations.
View Article and Find Full Text PDFThe clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers.
View Article and Find Full Text PDFIncreasingly extensive genomic diagnostics in cancer precision medicine require uniform evaluation criteria for the classification of variants with regard to their functional and therapeutic implications. In this review we present the most important guidelines and classification systems currently used in daily clinical practice, explain their advantages and disadvantages as well as differences and similarities, and present the step-by-step, systematic process that enables successful variant interpretation.
View Article and Find Full Text PDFPancreatic cysts or dilated pancreatic ducts are often found by cross-sectional imaging, but only mucinous lesions can become malignant. Therefore, distinction between mucinous and non-mucinous lesions is crucial for adequate patient management. We performed a prospective study including targeted next generation sequencing (NGS) of cell-free DNA in the diagnostic endoscopic ultrasound (EUS)-guided workup.
View Article and Find Full Text PDFObjectives: Implementation of tyrosine kinase inhibitors (TKI) and other targeted therapies was a main advance in thoracic oncology with survival gains ranging from several months to years for non-small-cell lung cancer (NSCLC) patients. High-throughput comprehensive molecular profiling is of key importance to identify patients that can potentially benefit from these novel treatments.
Material And Methods: Next-generation sequencing (NGS) was performed on 4500 consecutive formalin-fixed, paraffin-embedded specimens of advanced NSCLC (n = 4172 patients) after automated extraction of DNA and RNA for parallel detection of mutations and gene fusions, respectively.
Objective: A detailed understanding of the molecular alterations in different forms of cholangiocarcinogenesis is crucial for a better understanding of cholangiocarcinoma (CCA) and may pave the way to early diagnosis and better treatment options.
Design: We analysed a clinicopathologically well-characterised patient cohort (n=54) with high-grade intraductal papillary (IPNB) or tubulopapillary (ITPN) neoplastic precursor lesions of the biliary tract and correlated the results with an independent non-IPNB/ITPN associated CCA cohort (n=294). The triplet sample set of non-neoplastic biliary epithelium, precursor and invasive CCA was analysed by next generation sequencing, DNA copy number and genome-wide methylation profiling.
The identification of gene fusions from RNA sequencing data is a routine task in cancer research and precision oncology. However, despite the availability of many computational tools, fusion detection remains challenging. Existing methods suffer from poor prediction accuracy and are computationally demanding.
View Article and Find Full Text PDFUrol Oncol
July 2020
Background: Defects in DNA damage repair genes characterize a subset of men with prostate cancer and provide an attractive opportunity for precision oncology approaches. The prevalence of such perturbations in newly diagnosed, treatment-naïve patients with a high risk for lethal disease outcome, however, has not been sufficiently explored.
Patients And Methods: Prostate cancer specimens from 67 men with newly diagnosed early onset, localized high-risk/locally advanced or metastatic prostate cancer were included in this prospective pilot study.