Publications by authors named "Olaf Kolditz"

In order to assess sites for a deep geological repository for storing high-level nuclear waste safely in Germany, various numerical models and tools will be in use. For their interaction within one workflow, their reproducibility, and reliability version-controlled open-source solutions and careful documentation of model setups, results and verifications are of special value. However, spatially fully resolved models including all relevant physical and chemical processes are neither computationally feasible for large domains nor is the data typically available to parameterize such models.

View Article and Find Full Text PDF

This article describes the design and evaluation of a virtual field trip on the topic of radioactive waste management research for university education. We created an interactive virtual tour through the Mont Terri underground research laboratory by enhancing the virtual experiment information system, designed for domain experts, with background information, illustrations, tasks, tests, and an improved user interface. To put the tour's content into context, a conventional introductory presentation on the final disposal of radioactive waste was added.

View Article and Find Full Text PDF

The integrated vertical flow (IVF) constructed wetland consists of two or more chambers with heterogeneous flow patterns and strong aeration capability, possesses favorable remediation performance. The Constructed Wetland Model No.1 (CWM1) embedded in the OpenGeoSys # IPHREEQC was applied to investigate the wetland plant effects on treatment efficiency.

View Article and Find Full Text PDF

The present editorial 2020 continues the series of status reports in Environmental Earth Sciences (EES) in previous years 2017 and 2019 (Kolditz et al. in Environ Earth Sci 77: 8, 2018, Kolditz et al. in Environ Earth Sci 79: 11, 2020).

View Article and Find Full Text PDF

Supercritical geothermal systems are appealing sources of sustainable and carbon-free energy located in volcanic areas. Recent successes in drilling and exploration have opened new possibilities and spiked interest in this technology. Experimental and numerical studies have also confirmed the feasibility of creating fluid conducting fractures in sedimentary and crystalline rocks at high temperature, paving the road towards Enhanced Supercritical Geothermal Systems.

View Article and Find Full Text PDF

Contrasting deformation mechanisms precede volcanic eruptions and control precursory signals. Density increase and high uplifts consistent with magma intrusion and pressurization are in contrast with dilatant responses and reduced surface uplifts observed before eruptions. We investigate the impact that the rheology of rocks constituting the volcanic edifice has on the deformation mechanisms preceding eruptions.

View Article and Find Full Text PDF

Scientific visualization developed successful methods for scalar and vector fields. For tensor fields, however, effective, interactive visualizations are still missing despite progress over the last decades. We present a general approach for the generation of separating surfaces in symmetric, second-order, three-dimensional tensor fields.

View Article and Find Full Text PDF

A microscale zero-valent iron (mZVI)-based in situ reactive zone is a promising technology for contaminated groundwater remediation. Estimation of mZVI aging behavior after its injection into the subsurface is essential for efficiency and longevity assessments. In this study, batch tests were conducted to investigate the effect of initial pH on mZVI aging dynamics, as well as the formation and evolution of aging products over 112 days.

View Article and Find Full Text PDF

The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment.

View Article and Find Full Text PDF

Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media.

View Article and Find Full Text PDF

Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated.

View Article and Find Full Text PDF

Microscale zero valent iron (mZVI) is a promising material for in-situ contaminated groundwater remediation. However, its usefulness has been usually inhibited by mZVI particles' low mobility in saturated porous media for sedimentation and deposition. In our study, laboratory experiments, including sedimentation studies, rheological measurements and transport tests, were conducted to investigate the feasibility of xanthan gum (XG) being used as a coating agent for mZVI particle stabilization.

View Article and Find Full Text PDF

Background: To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database.

View Article and Find Full Text PDF

This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period.

View Article and Find Full Text PDF

We present a novel approach for the numerical simulation of the gelation of silicate solutions under density-dependent flow conditions. The method utilizes an auxiliary, not density-dependent solute that is subject to a linear decay function to provide temporal information that is used to describe the viscosity change of the fluid. By comparing the modeling results to experimental data, we are able to simulate the behavior and the gelation process of the injected solute for three different compositions, including long-term stability of the gelated area, and non-gelation of low concentrations due to hydro-dynamic dispersion.

View Article and Find Full Text PDF

In case of dissolved electron donors and acceptors, natural attenuation of organic contaminant plumes in aquifers is governed by hydrodynamic mixing and microbial activity. Main objectives of this work were (i) to determine whether aerobic and anaerobic biodegradation in porous sediments is controlled by transverse dispersion, (ii) to elucidate the effect of sediment heterogeneity on mixing and biodegradation, and (iii) to search for degradation-limiting factors. Comparative experiments were conducted in two-dimensional sediment microcosms.

View Article and Find Full Text PDF

In this article, different strategies for estimating first-order degradation rate constants from measured field data are compared by application to multiple, synthetic, contaminant plumes. The plumes were generated by numerical simulation of contaminant transport and degradation in virtual heterogeneous aquifers. These sites were then individually and independently investigated on the computer by installation of extensive networks of observation wells.

View Article and Find Full Text PDF

We present a sequence of purely advective transport models that demonstrate the influence of small-scale geometric inhomogeneities on contaminant transport in fractured crystalline rock. Special weight is placed on the role of statistically generated variable fracture apertures. The fracture network geometry and the aperture distribution are based on information from an in situ radionuclide retardation experiment performed at Grimsel test site (Swiss Alps).

View Article and Find Full Text PDF

The Virtual Aquifer approach is used in this study to assess the uncertainty involved in the estimation of contaminant plume lengths in heterogeneous aquifers. Contaminant plumes in heterogeneous two-dimensional conductivity fields and subject to first order and Michaelis-Menten (MM) degradation kinetics are investigated by the center line method. First order degradation rates and plume lengths are estimated from point information obtained along the plume center line.

View Article and Find Full Text PDF

Bentonites are preferred materials for use as engineered barriers for high-level nuclear waste repositories. Simulation of geochemical processes in bentonite is therefore important for long-term safety assessment of those repositories. In this work, the porewater chemistry of a bentonite sample subject to simultaneous heating and hydration, as studied by Cuevas et al.

View Article and Find Full Text PDF