Publications by authors named "Olaf Isken"

The non-structural (NS) proteins of the members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly.

View Article and Find Full Text PDF

Atypical porcine pestiviruses (APPV; ) are a recently discovered, very divergent species of the genus within the family . The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses.

View Article and Find Full Text PDF

Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions.

View Article and Find Full Text PDF

Pestiviruses like bovine viral diarrhoea virus (BVDV) and classical swine fever virus (CSFV) belong to the family . A special feature of the is the importance of nonstructural (NS) proteins for both genome replication and virion morphogenesis. The NS2-3-4A region and its regulated processing by the NS2 autoprotease and the NS3/4A protease plays a central role in the pestiviral life cycle.

View Article and Find Full Text PDF

Pestiviruses such as bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) belong to the family and represent pathogens of outstanding veterinary relevance. Pestiviruses enter cells via receptor-mediated endocytosis. For entry in bovine cells, complement regulatory protein CD46 serves as a cellular receptor for BVDV.

View Article and Find Full Text PDF

Unlabelled: Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease.

View Article and Find Full Text PDF

Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined.

View Article and Find Full Text PDF

In mammalian cells, newly synthesized mRNAs undergo a pioneer round of translation that is important for mRNA quality control. Following maturation of messenger ribonucleoprotein particles during and after the pioneer round, steady-state cycles of mRNA translation generate most of the cell's proteins. Translation factors, RNA-binding proteins, and targets of signaling pathways that are particular to newly synthesized mRNAs regulate critical functions of the pioneer round.

View Article and Find Full Text PDF

Telomeres protect linear chromosome ends from being recognized and processed as double-strand breaks by DNA repair activities. This protective function of telomeres is essential for chromosome stability. Until recently, telomeres have been considered to be transcriptionally silent.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins.

View Article and Find Full Text PDF

In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the translation initiation factor eIF3 and mRNA decay factors.

View Article and Find Full Text PDF

Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA.

View Article and Find Full Text PDF

Unraveling the molecular basis of the life cycle of hepatitis C virus (HCV), a prevalent agent of human liver disease, entails the identification of cell-encoded factors that participate in the replication of the viral RNA genome. This study provides evidence that the so-called NF/NFAR proteins, namely, NF90/NFAR-1, NF110/NFAR-2, NF45, and RNA helicase A (RHA), which mostly belong to the dsRBM protein family, are involved in the HCV RNA replication process. NF/NFAR proteins were shown to specifically bind to replication signals in the HCV genomic 5' and 3' termini and to promote the formation of a looplike structure of the viral RNA.

View Article and Find Full Text PDF

Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate.

View Article and Find Full Text PDF

The 5' non-translated regions (5'NTRs) of hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV) initiate translation of the viral RNA genome through an internal ribosomal entry site (IRES) and operate as major determinants of the RNA replication cycle. We report on comparative studies with both virus systems demonstrating that the functional organization of the 5'NTRs of HCV and BVDV shows evident differences despite a similar RNA structure. In the BVDV 5'NTR, replication signals are restricted to the 5' terminal domain I.

View Article and Find Full Text PDF

The genomes of positive-strand RNA viruses strongly resemble cellular mRNAs. However, besides operating as a messenger to generate the virus-encoded proteins, the viral RNA serves also as a template during replication. A central issue of the viral life cycle, the coordination of protein and RNA synthesis, is yet poorly understood.

View Article and Find Full Text PDF

A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. Here we describe a group of host factors designated as 'NFAR proteins' that are recruited by the replication machinery of bovine viral diarrhea virus, a close relative of the human pathogen hepatitis C virus. The NFAR proteins associate specifically with both the termini of the viral RNA genome involving regulatory elements in the 5' and 3' non-translated regions.

View Article and Find Full Text PDF

Recently, cell-based replicon systems for hepatitis C virus (HCV), in which the nonstructural proteins stably replicate subgenomic viral RNA in Huh7 cells, were developed. To date, one limitation of using these replicon systems to advance drug discovery is the inability of other genotypic derivatives, beyond those of two distinct strains of genotype 1b (HCV-N and Con1), to stably replicate in Huh7 cells. In this report, we evaluated a series of replicon genotype 1a-1b chimeras, as well as a complete genotype 1a replicon clone.

View Article and Find Full Text PDF