We present a high-power ridge waveguide distributed feedback (DFB) laser with a high-reflective coating and a phase shift section at the rear facet. The phase shift section is realized by means of a micro heater that is placed parallel to the ridge waveguide and the uniform grating. This type of heater section is easy to integrate into existing laser designs and allows adjusting and controlling the spectral behavior of the distributed feedback laser by shifting the rear facet phase condition, which makes it possible to overcome the challenges of mode-hop-free tuning of regular DFB lasers with highly reflective cleaved rear facet.
View Article and Find Full Text PDFSingle longitudinal mode continuous-wave operation of distributed-feedback (DFB) laser diodes based on GaN is demonstrated using laterally coupled 10th-order surface Bragg gratings. The gratings consist of V-shaped grooves alongside a 1.5 µm wide p-contact stripe fabricated by using electron-beam lithography and plasma etching.
View Article and Find Full Text PDFA flexible method to measure the modulation efficiency and residual amplitude modulation, including non-linearities, of phase modulators is presented. The method is based on demodulation of the modulated optical field in the optical domain by means of a heterodyne interferometer and subsequent analysis of the I&Q quadrature components of the corresponding RF beat note signal. As an example, we determine the phase modulation efficiency and residual amplitude modulation for both the TE and TM modes of a GaAs chip-based phase modulator at the wavelength of 1064 nm.
View Article and Find Full Text PDF