Several hundred cases of Hirmi Valley Liver Disease (HVLD), an often fatal liver injury, occurred from 2001 to 2011 in a cluster of rural villages in Tigray, Ethiopia. HVLD is principally caused by contamination of the food supply with plant derived pyrrolizidine alkaloids (PAs), with high exposure to the pesticide DDT among villagers increasing their susceptibility. In an untargeted global approach we aimed to identify metabolic changes induced by PA exposure through H NMR spectroscopic based metabolic profiling.
View Article and Find Full Text PDFObjectives: The invasive nature of biopsy alongside issues with categorical staging and sampling error has driven research into noninvasive biomarkers for the assessment of liver fibrosis in order to stratify and personalize treatment of patients with liver disease. Here, we sought to determine whether a metabonomic approach could be used to identify signatures reflective of the dynamic, pathological metabolic perturbations associated with fibrosis in chronic hepatitis C (CHC) patients.
Methods: Plasma nuclear magnetic resonance (NMR) spectral profiles were generated for two independent cohorts of CHC patients and healthy controls (n=50 original and n=63 validation).
Despite immense efforts to combat malaria in tropical and sub-tropical regions, the potency of this vector-borne disease and its status as a major driver of morbidity and mortality remain undisputed. We develop an analytical pipeline for characterizing Plasmodium infection in a mouse model and identify candidate urinary biomarkers that may present alternatives to immune-based diagnostic tools. We employ (1)H nuclear magnetic resonance (NMR) profiling followed by multivariate modeling to discover diagnostic spectral regions.
View Article and Find Full Text PDFConsumption of cruciferous vegetables (CVs) is inversely correlated to many human diseases including cancer (breast, lung, and bladder), diabetes, and cardiovascular and neurological disease. Presently, there are no readily measurable biomarkers of CV consumption and intake of CVs has relied on dietary recall. Here, biomarkers of CV intake were identified in the urine of 20 healthy Caucasian adult males using (1)H NMR spectroscopy with multivariate statistical modeling.
View Article and Find Full Text PDFThe pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes.
View Article and Find Full Text PDFWe characterize the integrated response of a rat host to the liver fluke Fasciola hepatica using a combination of (1)H nuclear magnetic resonance spectroscopic profiles (liver, kidney, intestine, brain, spleen, plasma, urine, feces) and multiplex cytokine markers of systemic inflammation. Multivariate mathematical models were built to describe the main features of the infection at the systems level. In addition to the expected modulation of hepatic choline and energy metabolism, we found significant perturbations of the nucleotide balance in the brain, together with increased plasma IL-13, suggesting a shift toward modulation of immune reactions to minimize inflammatory damage, which may favor the co-existence of the parasite in the host.
View Article and Find Full Text PDFMetabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis.
View Article and Find Full Text PDFThe time-related metabolic effects of 1-cyano-2-hydroxy-3-butene (CHB, crambene), a naturally occurring nitrile and experimental model toxin causing exocrine pancreatitis, have been investigated in rats using high-resolution NMR spectroscopy of urine and serum in combination with pattern recognition analysis. Rats were administered CHB subcutaneously in two doses, 15 mg/kg dose (n = 10) and 150 mg/kg (n = 10), and conventional histopathology and clinical chemistry assessments were performed. Urine samples were collected at - 16 and 0, 8, 24, 48, 72, 96, 120, 144 and 168 h postdosing and serum samples were collected at 48 and 168 h postdosing; these were analyzed using a range of 1D and 2D NMR spectroscopic methods.
View Article and Find Full Text PDFWe present a new approach for analysis, information recovery, and display of biological (1)H nuclear magnetic resonance (NMR) spectral data, cluster analysis statistical spectroscopy (CLASSY), which profiles qualitative and quantitative changes in biofluid metabolic composition by utilizing a novel local-global correlation clustering scheme to identify structurally related spectral peaks and arrange metabolites by similarity of temporal dynamic variation. Underlying spectral data sets are presented in a novel graphical format to represent high-dimensionality biochemical information conveying both statistical metabolite relationships and their responses to experimental perturbation simultaneously in a high-throughput and intuitive manner. The method is exemplified using multiple 600 MHz (1)H NMR spectra of rat (n = 40) urine samples collected over 160 h following the development of experimental pancreatitis induced by L-arginine (ARG) and a wider range of model toxins including acetaminophen, galactosamine, and 2-bromoethanamine.
View Article and Find Full Text PDFTissue injury and repair are often overlapping consequences of disease or toxic exposure, but are not often considered as distinct processes in molecular studies. To establish the systemic metabolic response to liver regeneration, the partial hepatectomy (PH) model has been studied in the rat by an integrated metabonomics strategy, utilizing (1)H NMR spectroscopy of urine, liver and serum. Male Sprague-Dawley rats were subjected to either surgical removal of approximately two-thirds of the liver, sham operated (SO) surgery, or no treatment (n = 10/group) and samples collected over a 7 day period.
View Article and Find Full Text PDFThe time-related metabolic responses to l-arginine (ARG)-induced exocrine pancreatic toxicity were investigated using single ip doses of 1,000 and 4,000 mg/kg body weight over a 7 day experimental period in male Sprague-Dawley rats. Sequential timed urine and plasma samples were analyzed using high resolution (1)H NMR spectroscopy together with complementary clinical chemistry and histopathology analyses. Principal components analysis (PCA) and orthogonal projection on latent structures discriminant analysis (O-PLS-DA) were utilized to analyze the (1)H NMR data and to extract and identify candidate biomarkers and to construct metabolic trajectories post ARG administration.
View Article and Find Full Text PDFWe present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.
View Article and Find Full Text PDFMetabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here.
View Article and Find Full Text PDFDetection and classification of in vivo drug toxicity is an expensive and time-consuming process. Metabolic profiling is becoming a key enabling tool in this area as it provides a unique perspective on the characterization and mechanisms of response to toxic insult. As part of the Consortium on Metabonomic Toxicology (COMET) project, a substantial metabolic and pathological database was constructed.
View Article and Find Full Text PDFA novel statistically integrated proteometabonomic method has been developed and applied to a human tumor xenograft mouse model of prostate cancer. Parallel 2D-DIGE proteomic and 1H NMR metabolic profile data were collected on blood plasma from mice implanted with a prostate cancer (PC-3) xenograft and from matched control animals. To interpret the xenograft-induced differences in plasma profiles, multivariate statistical algorithms including orthogonal projection to latent structure (OPLS) were applied to generate models characterizing the disease profile.
View Article and Find Full Text PDFMetabonomics is a relatively new field of research in which the total pool of metabolites in body fluids or tissues from different patient groups is subjected to comparative analysis. Nuclear magnetic resonance (NMR) spectroscopy is the technology that is currently most widely used for the analysis of these highly complex metabolite mixtures, and hundreds of metabolites can be detected without any upfront separation. We have investigated in this study whether gas chromatography (GC) separation in combination with flame ionisation detection (FID) and mass spectrometry (MS) detection can be used for metabolite profiling from urine.
View Article and Find Full Text PDFToxicol Appl Pharmacol
April 2005
Interspecies variation between rats and mice has been studied for hydrazine toxicity using a novel metabonomics approach. Hydrazine hydrochloride was administered to male Sprague-Dawley rats (30 mg/kg, n = 10 and 90 mg/kg, n = 10) and male B6C3F mice (100 mg/kg, n = 8 and 250 mg/kg, n = 8) by oral gavage. In each species, the high dose was selected to produce the major histopathologic effect, hepatocellular lipid accumulation.
View Article and Find Full Text PDFMetabonomics can be viewed as the process of defining multivariate metabolic trajectories that describe the systemic response of organisms to physiological perturbations through time. We have explored the hypothesis that the homothetic geometry of a metabolic trajectory, i.e.
View Article and Find Full Text PDFPrincipal component analysis (PCA) has been applied to three nuclear magnetic resonance (NMR) spectral editing methods, namely, the Carr-Purcell-Meiboom-Gill spin-echo, diffusion editing, and skyline projection of a two-dimensional J-resolved spectrum, obtained from high-resolution magic-angle spinning NMR spectroscopy of liver tissues, to distinguish between control and hydrazine-treated rats. The effects of the toxin on rat liver biochemistry were directly observed and characterized by depleted levels of liver glycogen, choline, taurine, trimethylamine N-oxide, and glucose and by elevated levels of lipids and alanine. The highly unsaturated omega-3-type fatty acid was observed for the first time in hydrazine-treated rat liver.
View Article and Find Full Text PDFThe role that metabonomics has in the evaluation of xenobiotic toxicity studies is presented here together with a brief summary of published studies. To provide a comprehensive assessment of this approach, the Consortium for Metabonomic Toxicology (COMET) has been formed between six pharmaceutical companies and Imperial College of Science, Technology and Medicine (IC), London, UK. The objective of this group is to define methodologies and to apply metabonomic data generated using (1)H NMR spectroscopy of urine and blood serum for preclinical toxicological screening of candidate drugs.
View Article and Find Full Text PDFIn-vitro NMR spectroscopic examinations of tissue extracts can be combined with appropriate pattern-recognition and visualization techniques in order to monitor characteristic metabolic differences between tissue classes. In the present study, such techniques are applied to a set of 88 breast-tissue samples with the intention of identifying typical differences between various tissue classes. The set contains 49 breast-tumor samples of various tumor grades and 39 samples of healthy tissue.
View Article and Find Full Text PDFMetabonomic analysis of biofluids and tissues utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to toxicity for many xenobiotics. To assess the analytical reproducibility of metabonomic protocols, sample preparation and NMR data acquisition were performed at two sites (one using a 500 MHz and the other using a 600 MHz system) using two identical (split) sets of urine samples from an 8-day acute study of hydrazine toxicity in the rat. Despite the difference in spectrometer operating frequency, both datasets were extremely similar when analyzed using principal components analysis (PCA) and gave near-identical descriptions of the metabolic responses to hydrazine treatment.
View Article and Find Full Text PDFCryogenic probe technology can significantly compensate for the inherently low sensitivity of natural abundance 13C NMR spectroscopy. This now permits its routine use in NMR spectroscopy of biofluids, such as urine or plasma, with acquisition times that enable a high throughput of samples. Metabonomic studies often generate numerous samples in order to characterize fully the time-dependent biochemical response to stimuli, but until now, they have been largely conducted using 1H NMR spectroscopy because of its high sensitivity and hence efficient data acquisition.
View Article and Find Full Text PDF