Publications by authors named "Ola Z Ismail"

Introduction: Cerebrospinal fluid (CSF) oligoclonal banding (OCB) analysis aids in the diagnosis of multiple sclerosis (MS). Despite its clinical importance, there is profound variation in processes, reporting, and interpretation of CSF OCB and associated tests/indices across Canadian laboratories. This is likely due to the lack of clear, evidence-based recommendations on CSF OCB analysis processes and reporting.

View Article and Find Full Text PDF

Metastasis is present in approximately 30% of patients diagnosed with renal cell carcinoma (RCC) and is associated with a 5-year survival rate of < 15%. Kidney injury molecule 1 (KIM-1), encoded by the HAVCR1 gene, is a proximal tubule cell-surface glycoprotein and a biomarker for early detection of RCC, but its pathophysiological significance in RCC remains unclear. We generated human and murine RCC cell lines either expressing or lacking KIM-1, respectively, and compared their growth and metastatic properties using validated methods.

View Article and Find Full Text PDF

Background: Studies have illustrated how a low or undetectable high-sensitivity cardiac troponin (hs-cTn) concentration at emergency department (ED) presentation can rule out myocardial infarction (MI). A problem with using an undetectable hs-cTn cutoff is that this value may be defined differently among hospitals and is also difficult to monitor. In the present study, we assess the diagnostic performance of a clinical chemistry score (CCS) vs hs-cTn alone in the presentation blood sample in the ED for patient hospital admission in a multicenter setting.

View Article and Find Full Text PDF

Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is specifically upregulated on proximal tubular epithelial cells (PTECs) during acute kidney injury and mitigates tissue damage by mediating efferocytosis (the phagocytic clearance of apoptotic cells). The signaling molecules that regulate efferocytosis in TECs are not well understood. Using a yeast two-hybrid screen, we identified the dynein light chain protein, Tctex-1, as a novel KIM-1-interacting protein.

View Article and Find Full Text PDF

Ischemia-reperfusion injury during kidney transplantation predisposes to delayed graft function, rejection, and premature graft failure. Exacerbation of tissue damage and alloimmune responses may be explained by necroinflammation: an autoamplification loop of cell death and inflammation, which is mediated by the release of damage-associated molecular patterns (eg, high-mobility group box-1; HMGB1) from necrotic cells that activate both innate and adaptive immune pathways. Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is upregulated on injured proximal tubular epithelial cells and enables them to clear apoptotic and necrotic cells.

View Article and Find Full Text PDF

Acute pancreatitis is a rapid onset of inflammation of the pancreas causing mild to severe life threatening conditions [1, 2]. In Canada, acute pancreatitis is the 5th most expensive digestive disease in Canada with a considerable economic burden on the health care system [3]. The diagnosis of acute pancreatitis is usually based on the presence of abdominal pain and elevated levels of serum amylase and/or lipase.

View Article and Find Full Text PDF

Kidney injury molecule-1 (KIM-1) is a receptor for the "eat me" signal, phosphatidylserine, on apoptotic cells. The specific upregulation of KIM-1 by injured tubular epithelial cells (TECs) enables them to clear apoptotic cells (also known as efferocytosis), thereby protecting from acute kidney injury. Recently, we uncovered that KIM-1 binds directly to the α-subunit of heterotrimeric G protein (Gα) and inhibits its activation by reactive oxygen species during renal ischemia-reperfusion injury (Ismail OZ, Zhang X, Wei J, Haig A, Denker BM, Suri RS, Sener A, Gunaratnam L.

View Article and Find Full Text PDF

Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear.

View Article and Find Full Text PDF