Autonomous technologies are increasingly used in various areas of science. The use of unmanned vehicles for hydrographic surveys in shallow coastal areas requires accurate estimation of shoreline position. This is a nontrivial task, which can be performed using a wide range of sensors and methods.
View Article and Find Full Text PDFHydrographic surveys enable the acquisition and processing of bathymetric data, which after being plotted onto nautical charts, can help to ensure safety of navigation, monitor changes in the coastal zone, and assess hydro-engineering structure conditions. This study involves the measurement of waterbody depth, identification of the seabed shape and geomorphology, the coastline course, and the location of underwater obstacles. Hydroacoustic systems mounted on vessels are commonly used in bathymetric measurements.
View Article and Find Full Text PDFThe integration of geospatial data in hydrography, performed using different measurement systems, involves combining several study results to provide a comprehensive analysis. Each of the hydroacoustic and optoelectronic systems is characterised by a different spatial reference system and the method for technical implementation of the measurement. Therefore, the integration of hydrographic data requires that problems in selected fields of electronics, geodesy and physics (acoustics and optics) be solved.
View Article and Find Full Text PDFBathymetric surveys of the same body of water, performed at regular intervals, apart from updating the geospatial information used to create paper and electronic maps, allow for several additional analyses, including an evaluation of geomorphological changes occurring in the coastal zone. This research is particularly important in places where the shape of the coastal zone has been violently disturbed, including by human activity. Tombolo is such a phenomenon and it dynamically shapes the new hydrological conditions of the coastal zone.
View Article and Find Full Text PDFThe main factors influencing the shape of the beach, shoreline and seabed include undulation, wind and coastal currents. These phenomena cause continuous and multidimensional changes in the shape of the seabed and the Earth's surface, and when they occur in an area of intense human activity, they should be constantly monitored. In 2018 and 2019, several measurement campaigns took place in the littoral zone in Sopot, related to the intensive uplift of the seabed and beach caused by the tombolo phenomenon.
View Article and Find Full Text PDF