Proteins of obligate halophilic organisms have an unusually high number of acidic amino acids, thought to enable them to function in multimolar KCl environments. Clarifying the molecular scale mechanisms by which this occurs is relevant for biotechnology, to enable enzymatic synthesis of economically important small molecules in salty environments and other environments with low water activity. Previous studies have suggested that acidic amino acids are necessary at high salt concentration to keep the proteins hydrated by competing with the ions in solution for available water (the "solvent-only" model).
View Article and Find Full Text PDFHuman guanylate-binding protein 1 (hGBP-1) shows a dimer-induced acceleration of the GTPase activity yielding GDP as well as GMP. While the head-to-head dimerization of the large GTPase (LG) domain is well understood, the role of the rest of the protein, particularly of the GTPase effector domain (GED), in dimerization and GTP hydrolysis is still obscure. In this study, with truncations and point mutations on hGBP-1 and by means of biochemical and biophysical methods, we demonstrate that the intramolecular communication between the LG domain and the GED (LG:GED) is crucial for protein dimerization and dimer-stimulated GTP hydrolysis.
View Article and Find Full Text PDFFibronectin is a large multidomain protein of the extracellular matrix that harbors two heparin binding sites, Hep-I and Hep-II, which support the heparin-dependent adhesion of melanoma and neuroblastoma cells [Barkalow, F. J. B.
View Article and Find Full Text PDF3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase was investigated in different organic cosolvents by means of kinetic and calorimetric measurements, molecular dynamics simulations, and small-angle X-ray scattering. The combined experimental and theoretical techniques were essential to complement each other's limitations in the investigation of the complex interaction pattern between the enzyme, different solvent types, and concentrations. In this way, the underlying mechanisms for the loss of enzyme activity in different water-miscible solvents could be elucidated.
View Article and Find Full Text PDF