Publications by authors named "Oksana Zaluzhna"

Inverse-micelle-encapsulated water formed in the two-phase Brust-Schiffrin method (BSM) synthesis of Au nanoparticles (NPs) is identified as essential for dialkyl diselenide/disulfide to react with the Au(III) complex in which the Se-Se/S-S bond is broken, leading to formation of higher-quality Au NPs.

View Article and Find Full Text PDF

Here we report the first unambiguous identification of the chemical structures of the precursor species involving metal (Au and Ag) ions and Te-containing ligands in the Brust-Schiffrin syntheses of the respective metal nanoparticles, through which the different reaction pathways involved are delineated.

View Article and Find Full Text PDF

Metal precursors in the one-phase (1p) and two-phase (2p) Brust-Schiffrin method (BSM) synthesis of Au nanoparticles (NPs) using dioctyl-diselenides were identified. A single dominant type of metal precursor was found in the 1p synthesis as compared to multiple ones in the 2p synthesis, which was proposed as the key reason why the former is better than the latter.

View Article and Find Full Text PDF

Although Brust-Schiffrin two-phase synthesis is a popular method for synthesizing ligand-protected metal nanoparticles with an average size of less than 5 nm, the details on how the reactions can be controlled from a mechanistic point of view are still unclear, therefore hindering efforts to synthesize monodisperse metal nanoparticles. It was recently discovered that this method is basically an inverse-micelle-based synthesis (Li, Y.; Zaluzhna, O.

View Article and Find Full Text PDF

A detailed study of electrocatalytic properties of Au@Pt nanoparticles (NPs) as functions of Pt shell packing density and Au core size in terms of CO/methanol oxidation and oxygen reduction reactions is reported here. While most samples studied showed inferior catalytic activities to those of the commercial Pt black that fall reasonably well in a d-band-center up-shift (i.e.

View Article and Find Full Text PDF

The co-presence of thiol vs. disulfide in the well-known Brust-Schiffrin two-phase synthesis has been identified as a source of size polydispersity in nanoparticles synthesized and a procedure has been proposed to address this long outstanding issue.

View Article and Find Full Text PDF

New insights into the formation chemistry of chalcogenate-protected metal nanoparticles (NPs) synthesized via the well-known Brust-Schiffrin two-phase method are presented here. On the basis of Raman, NMR, and surface plasmon resonance characterizations, it is concluded that, before the formation of any metal-chalcogen bonds, metal nucleation centers/NPs are first formed inside the inverse micelles of the tetrabutylammonium bromide in the organic solvent, where the metal ions are reduced by NaBH(4). The ensuing formation of the metal-chalcogen bonds between the naked metal NPs inside the micelles and the organo-chalcogen ligands in the organic solvent is the mechanism by which the further growth of the metal core can be controlled.

View Article and Find Full Text PDF

The unimolecular reactions of CF(2)ClCFClCH(2)F and CF(2)ClCF(2)CH(2)Cl molecules formed with 87 and 91 kcal mol(-1), respectively, of vibrational energy from the recombination of CF(2)ClCFCl with CH(2)F and CF(2)ClCF(2) with CH(2)Cl at room temperature have been studied by the chemical activation technique. The 2,3- and 1,2-ClF interchange reactions compete with 2,3-ClH and 2,3-FH elimination reactions. The total unimolecular rate constant for CF(2)ClCF(2)CH(2)Cl is 0.

View Article and Find Full Text PDF

The unimolecular reactions of CF3CFClCH2Cl molecules formed with 87 kcal mol(-1) of vibrational energy by recombination of CF3CFCl and CH2Cl radicals at room temperature have been characterized by the chemical activation technique. The 2,3-ClH and 2,3-FH elimination reactions, which have rate constants of (2.5 +/- 0.

View Article and Find Full Text PDF