Cellulose was produced by the modified traditional method with 35% yield from the stem of Sosnovsky hogweed and was characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffractometry, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). For , the degree of crystallinity (approximately 70%) and the glass transition temperature (105-108 °C) were determined. It was found that the whiteness characteristic in the case of was 92% and this significate was obtained without a bleaching procedure using chlorine-containing reagents.
View Article and Find Full Text PDFNeuropeptide galanin and its N-terminal fragments reduce the generation of reactive oxygen species and normalize metabolic and antioxidant states of myocardium in experimental cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to elucidate the effect of WTLNSAGYLLGPβAH-OH (peptide G), a pharmacological agonist of the galanin receptor GalR2, on the cardiac injury induced by administration of streptozotocin (STZ) in rats. Peptide G was prepared by solid phase peptide synthesis using the Fmoc strategy and purified by preparative HPLC; its structure was confirmed by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry.
View Article and Find Full Text PDFAntioxidant properties of rat galanin GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2 (Gal), N-terminal fragment of galanin (2-15 aa) WTLNSAGYLLGPHA (G1), and its modified analogue WTLNSAGYLLGPβAH (G2) were studied in vivo in the rat model of regional myocardial ischemia and reperfusion and in vitro in the process of Cu2+-induced free radical oxidation of human blood plasma low-density lipoproteins. Intravenous administration of G1, G2, and Gal to rats after ischemia induction reduced the infarction size and activities of the necrosis markers, creatine kinase-MB and lactate dehydrogenase, in blood plasma at the end of reperfusion. G1, G2, and Gal reduced formation of the spin adducts of hydroxyl radicals in the interstitium of the area at risk during reperfusion, moreover, G2 and Gal also reduced formation of the secondary products of lipid peroxidation in the reperfused myocardium.
View Article and Find Full Text PDFChemically modified peptide apelin-12 ([MeArg, NLe]-apelin12, peptide M) is able to reduce reactive oxygen species (ROS) formation, cell death, and metabolic and ionic homeostasis disorders in experimental myocardial ischemia-reperfusion injury. These beneficial effects indicate the therapeutic potential of this compound in cardiovascular diseases. The goals of this work were to optimize the synthesis of peptide M, and to study its proteolytic stability and effect on the heart function of rabbits with doxorubicin (Dox) cardiomyopathy.
View Article and Find Full Text PDFThe mechanisms of protective action of the neuropeptide galanin and its N-terminal fragments against myocardial ischaemia/reperfusion (I/R) injury remain obscure. The aim of this work was to study effects of a novel peptide agonist of galanin receptors [βAla14, His15]-galanin (2-15) (G1) and the full-length galanin (G2) on energy and antioxidant status of the heart with acute infarction. The peptides were synthesized by the automatic solid phase method using Fmoc technology.
View Article and Find Full Text PDFN-terminal fragments of galanin (2-11) and (2-15) are critical for binding to GalR1-3 receptors, members of the G-protein-coupled receptor superfamily, and are involved in myocardial protection against ischemia/reperfusion (I/R) injury. This study was designed to synthesize novel GalR1-3 agonists with improved properties and evaluate their efficiency as cardioprotective agents. Peptide agonists were synthesized by the automatic solid phase method using Fmoc technology and purified by preparative HPLC.
View Article and Find Full Text PDFThe clinical use of antineoplastic agent doxorubicin (DOX) is limited due to its cardiotoxic action. [βAla14, His15]-galanine (2-15) (G) is a novel synthetic agonist of galanin receptors GalR1-3 having cardioprotective properties in animal models in vivo. The aim of the present study was to explore effects of G on DOX-induced cardiotoxicity.
View Article and Find Full Text PDFAgonists and antagonists for galanin receptor subtypes GalR1-3 can be used as putative therapeutics targets for the treatment of various human diseases. However, effects of galanin and its N-terminal fragments on myocardial ischemia/reperfusion injury remain unclear. This study was designed to assess the ability of the full-length galanin (GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2, G1), the natural fragments WTLNSAGYLL-NH2 (G2) and WTLNSAGYLLGPHA (G3), and their modified analogs WTLNAAGYLL (G4) and WTLNSAGYLLGPβAH (G5) to limit acute myocardial infarction in rats in vivo.
View Article and Find Full Text PDFThe maintenance of nitric oxide (NO) bioavailability has been recognized as an important component of myocardial protection during cardiac surgery. This study was designed to evaluate the efficacy of using two NO-donating compounds in cardioplegia and reperfusion: (i) a modified peptide apelin-12 (MA12) that activates endothelial NO synthase (eNOS) and (ii) dinitrosyl iron complexes with reduced glutathione (DNIC-GS), a natural NO vehicle. Isolated perfused working rat hearts were subjected to normothermic global ischemia and reperfusion.
View Article and Find Full Text PDFBackground And Purpose: Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury.
Experimental Approach: Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry.
Background And Purpose: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury.
Experimental Approach: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method.