Publications by authors named "Oksana Kalinkevich"

The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique.

View Article and Find Full Text PDF

In a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12-27 nm), mixed with Ca(HPO) aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle.

View Article and Find Full Text PDF

High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity.

View Article and Find Full Text PDF

In this work a simple and inexpensive method to assess the concentration ratio of the labile and mineral-bound microelements of the bone tissue was developed. The approach is based on the separation of the components of bone tissue by their selective solubility with the subsequent determination of microelements with atomic absorption spectrometry. The total concentrations of Mg, Zn, Fe, Sr, Al, Cu, and Mn and the concentrations of these elements in aqueous solutions with pH 6.

View Article and Find Full Text PDF

Background: Investigation of new effective drugs against the methicillin-resistant strains of Staphylococcus aureus (MRSA) is an urgent issue of modern medicine. Antiseptics as an alternative of antibiotics are strong, sustained, and active preparations against resistant strains and do not violate microbiocenosis.

Materials And Methods: The activity of in situ prepared chitosan-Ag nanoparticles (Ag NPs) solution with different component ratio was tested against MRSA isolated from patients.

View Article and Find Full Text PDF

Chitosan-hydroxyapatite composite materials were synthesized and the possibility to make their surface charged by corona discharge treatment has been evaluated. Dielectric and electric properties of the materials were studied by dielectric spectroscopy, including application of equivalent circuits method and computer simulations. Dielectric spectroscopy shows behavior of the materials quite different from that of both chitosan and HA alone.

View Article and Find Full Text PDF

Chitosan/hydroxyapatite scaffolds could be used for bone regeneration in case the application of auto- or allografts is impossible. The objective of the present work was to characterize and study in vivo biodegradation of simple chitosan/hydroxyapatite scaffolds. For this purpose, a series of chitosan/hydroxyapatite composites has been synthesized in aqueous medium from chitosan solution and soluble precursor salts by a one step coprecipitation method.

View Article and Find Full Text PDF