Publications by authors named "Oksana I Leszczyszyn"

The chemical properties of toxic cadmium and essential zinc are very similar, and organisms require intricate mechanisms that drive selective handling of metals. Previously regarded as unspecific "metal sponges", metallothioneins (MTLs) are emerging as metal selectivity filters. By utilizing C.

View Article and Find Full Text PDF

Purpose: Forming accurate data models that assist the design of developability assays is one area that requires a deep and practical understanding of the problem domain. We aim to incorporate expert knowledge into the model building process by creating new metrics from instrument data and by guiding the choice of input parameters and Machine Learning (ML) techniques.

Methods: We generated datasets from the biophysical characterisation of 5 monoclonal antibodies (mAbs).

View Article and Find Full Text PDF

Taylor dispersion analysis (TDA) is an absolute method for determining the diffusion coefficients, and hence the hydrodynamic radii, of particles by measuring the dispersion in a carrier medium flowing within a capillary. It is applicable under conditions which allow the particles to radially diffuse appreciably across the cross-section of the flow before the measurement and therefore implies long measurement times are required for large particles with small diffusion coefficients. In this paper, a method has been developed by which the diffusion coefficients of large particles can be rapidly estimated from the shapes of the concentration profiles obtained at much earlier measurement times.

View Article and Find Full Text PDF

Taylor Dispersion Analysis (TDA) in the presence of interactions between solutes and capillary walls yields inaccurate results for the diffusion coefficients of the solutes because the resulting concentration profiles are broadened and asymmetric. Whilst there are practical ways of mitigating these interactions, it is not always possible to eradicate them completely. In this paper, an analytical method of mitigating the effects of the adsorptions is presented.

View Article and Find Full Text PDF

Taylor dispersion analysis (TDA) is a fast and simple method for determining hydrodynamic radii. The method is applicable under conditions that allow the solute molecules to diffuse appreciably across the cross section of the flow before its measurement. This mitigates the effects of early stage convection on the dispersion and thus imposes a lower bound on the value of the diffusion coefficient measurable at a given flow speed.

View Article and Find Full Text PDF

More than 30 years have passed since the discovery of the first plant metallothionein in wheat embryos, from which the emergence of a uniquely diverse metallothionein family with a fascinating array of structural nuances and molecular properties has been witnessed. Metallothioneins are not only constitutively expressed, but the production of different types of plant metallothionein is also stimulated by a myriad of endogenous and exogenous agents in both a temporally and spatially regulated manner. This ubiquitous, yet discrete expression of metallothioneins not only signifies their importance for plant survival and development, but also suggests a functional divergence for the individual plant metallothionein subfamilies.

View Article and Find Full Text PDF

The genome of the nematode Caenorhabditis elegans encodes for two multifunctional metal binding metallothioneins (MTs), CeMT-1 and CeMT-2. Here we applied qPCR to identify a transcriptional up-regulation following the exposure to free radical generators (ROS) paraquat or hydrogen peroxide, a trend that was confirmed with Pmtl::GFP expressing alleles. The deletion of the MT loci resulted in an elevation of in vivo levels of hydrogen peroxide and exposure to ROS caused a reduction in total egg production, growth and life span in wild type nematodes, effects that were particularly pronounced in the CeMT-2 and double knockout.

View Article and Find Full Text PDF

In vitro evidence for the isoform-specific partitioning of cadmium and zinc ions between the two C. elegans metallothioneins is presented. This observation is discussed in terms of isoform-specific affinities towards zinc and cadmium and the implications of our study on the in vivo roles of C.

View Article and Find Full Text PDF

The direct observation of binding and release of spectroscopically silent metal ions such as Zn(2+) and Ca(2+) by proteins has been challenging before the advent of native electrospray ionisation mass spectrometry. This report highlights the powerful capability of ESI-MS to provide insight into metalloprotein speciation that is independent of any spectroscopic property. Using the zinc-binding plant metallothionein E(C) from wheat as a study case, we show that ESI-MS is unique amongst other techniques in capturing intermediary metallospecies that evolve during the course of metal transfer to the chelator EDTA, as a model reaction to mimic the biological function of the protein as a zinc donor.

View Article and Find Full Text PDF

The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively.

View Article and Find Full Text PDF

The selectivity of proteins involved in metal ion homeostasis is an important part of the puzzle to understand how cells allocate the correct metal ions to the correct proteins. Due to their similar ligand-binding properties, and their frequent co-existence in soils, essential zinc and toxic cadmium are a particularly challenging couple. Thus, minimisation of competition of Cd(2+) for Zn(2+) sites is of crucial importance for organisms that are in direct contact with soil.

View Article and Find Full Text PDF

Metallothioneins have been the subject of intense study for five decades, and have greatly inspired the development of bio-analytical methodologies including multi-dimensional and multi-nuclear NMR.With further advancements in molecular biology, protein science, and instrumental techniques, recent years have seen a renaissance of research into metallothioneins. The current report focuses on in vitro studies of so-called class II metallothioneins from a variety of phyla, highlighting the diversity of metallothioneins in terms of structure, biological functions, and molecular functions such as metal ion specificity, thermodynamic stabilities, and kinetic reactivity.

View Article and Find Full Text PDF

Early cysteine labeled (E(C)) proteins are plant metallothioneins, which were first identified in wheat embryos and are thought to be seed-specific. An exhaustive analysis of expressed sequence tag (EST) entries reveals that homologs are expressed in embryos of both classes of flowering plants (monocotyledons and dicotyledons), but also occur in conifers (gymnosperms) and seed-free spike moss (lycophyta). Mass spectrometric and elemental analysis results indicate that, contrary to the widely propagated number of five, E(C) binds predominantly six zinc ions in at least two zinc-thiolate clusters.

View Article and Find Full Text PDF