Publications by authors named "Oksana Gruzdyn"

Unlike other malignancies, ovarian cancer (OC) creates a complex tumor microenvironment with distinctive peritoneal ascites consisting of a mixture of several immunosuppressive cells which impair the ability of the patient's immune system to fight the disease. The poor survival rates observed in advanced stage OC patients and the lack of effective conventional therapeutic options have been attributed in large part to the immature dendritic cells (DCs), IL-10 secreting regulatory T cells, tumor-associated macrophages, myeloid-derived suppressor cells, and cancer stem cells that secrete inhibitory cytokines. This review highlights the critical role played by the intraperitoneal presence of IL-10 in the generation of an immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Background: We have previously demonstrated in vitro cytotoxicity of mesothelin-chimeric antigen receptor autologous T cells against pancreatic cancer cells using lentiviral vectors, but these vectors pose safety concerns. Here, we incorporated Sleeping Beauty and minicircle design enhancements into interleukin-2-secreting natural NK-92MI cells to eliminate both bacterial and viral components and address inhibition by the tumor microenvironment.

Methods: Parental (conventional deoxyribonucleic acid)-mesothelin-chimeric antigen receptor and minicircle-mesothelin-chimeric antigen receptor vectors were electroporated into NK-92MI cells and engraftment was visualized by immunofluorescence analysis with protein-L staining.

View Article and Find Full Text PDF

Background: Pancreatic cancer cells are known to shield themselves from immunosurveillance by secreting immune inhibitory cytokines such as Interleukin-10. Using mesothelin, a differentiating antigen that is overexpressed in pancreatic cancer, we assessed the negative effect of the tumor microenvironment on chimeric antigen receptor T cell-based immunotherapy and its reversal via depletion of Interleukin-10.

Methods: T cells cultured in pancreatic cancer-cell-conditioned medium were transduced with lentiviruses encoding mesothelin-chimeric antigen receptor in the presence or absence of anti-Interleukin-10-blocking antibody.

View Article and Find Full Text PDF

Purpose: MicroRNA (miR)-26a has been identified as a tumor suppressor in pancreatic cancer cells. Although wild-type p53 controls cell-cycle progression, its mutant form normally present in pancreatic cancer loses this capability. Phosphorylation is known to restore wild-type activity to mutant p53.

View Article and Find Full Text PDF

Importance: In conjunction with chemotherapy, immunotherapy with dendritic cells (DCs) may eliminate minimal disease burden by generating cytotoxic T lymphocytes. Enhanced cytosolic bioavailability of tumor-specific antigens improves access to human leukocyte antigen (HLA) class I molecules for more efficient cytotoxic T lymphocyte generation. Various cell-penetrating domains (CPDs) are known to ferry covalently linked heterologous antigens to the intracellular compartment by traversing the plasma membrane.

View Article and Find Full Text PDF

Recent observations suggest a lower incidence of malignancies in patients infected with HIV during treatment with Highly Active Anti-Retroviral Therapy (HAART) utilizing protease inhibitors. We investigated the effects of ritonavir, a FDA approved HIV protease inhibitor, on proliferation of pancreatic ductal adeno-carcinoma (PDAC) cell lines. Human PDAC cell lines BxPC-3, MIA PaCa-2, and PANC-1 were propagated under standard conditions and treated with serial dilutions of ritonavir.

View Article and Find Full Text PDF

MAGE-A3 is highly expressed in epithelial ovarian cancer (EOC), making it a promising candidate for immunotherapy. We investigated whether dendritic cells (DCs) transduced with a rAAV-6 capsid mutant vector Y445F could elicit effective MAGE-A3-specific anti-tumor cytotoxic T lymphocyte (CTL) responses in vitro. MAGE-A3 was cloned and rAAV-6-MAGE-A3 purified, followed by proviral genome detection using real-time PCR.

View Article and Find Full Text PDF

Purpose: Enhancer of zeste homologue 2 (EZH2), a component of the chromatin modification protein complex, is upregulated in pancreatic ductal adenocarcinoma (PDAC), whereas loss of p53 and its downstream target, p21(waf1/cip1), is also observed frequently. We sought to investigate the role of the p53-p21(waf1/cip1) pathway in relation to EZH2-mediated inhibition of PDAC.

Methods: The PANC-1 cell line was utilized in chromatin immunoprecipitation, gene profiling, Western blot, cell invasion, cell proliferation, and tumor xenograft assays.

View Article and Find Full Text PDF

The enhancer of zeste homolog 2 (EZH2) methyltransferase is a transcriptional repressor. EZH2 is abnormally elevated in epithelial ovarian cancer (EOC). We demonstrated that EZH2 knockdown inhibited cell growth, activated apoptosis, and enhanced chemosensitivity.

View Article and Find Full Text PDF

Purpose: To investigate the possibility of inhibiting the progression of pancreatic ductal adenocarcinoma (PDAC) by facilitating the expression of E-cadherin through the enforced expression of microRNA-101 (miR-101).

Methods: In situ hybridization was conducted with archival tissue using a double digoxigenin-labeled probe. Chromatin immunoprecipitation (ChIP) assay was conducted with EZ-Magna ChIPTM A.

View Article and Find Full Text PDF