Publications by authors named "Okomo-Adhiambo M"

Next-generation sequencing (NGS) is a powerful tool for detecting and investigating viral pathogens; however, analysis and management of the enormous amounts of data generated from these technologies remains a challenge. Here, we present VPipe (the Viral NGS Analysis Pipeline and Data Management System), an automated bioinformatics pipeline optimized for whole-genome assembly of viral sequences and identification of diverse species. VPipe automates the data quality control, assembly, and contig identification steps typically performed when analyzing NGS data.

View Article and Find Full Text PDF

Effective laboratory-based surveillance and public health response to bacterial meningitis depends on timely characterization of bacterial meningitis pathogens. Traditionally, characterizing bacterial meningitis pathogens such as (Nm) and (Hi) required several biochemical and molecular tests. Whole genome sequencing (WGS) has enabled the development of pipelines capable of characterizing the given pathogen with equivalent results to many of the traditional tests.

View Article and Find Full Text PDF

Background: Monitoring influenza virus susceptibility to neuraminidase (NA) inhibitors (NAIs) is vital for detecting drug-resistant variants, and is primarily assessed using NA inhibition (NI) assays, supplemented by NA sequence analysis. However, differences in NI testing methodologies between surveillance laboratories results in variability of 50% inhibitory concentration (IC50) values, which impacts data sharing, reporting and interpretation. In 2011, the Centers for Disease Control and Prevention (CDC), in collaboration with the Association for Public Health Laboratories (APHL) spearheaded efforts to standardize fluorescence-based NI assay testing in the United States (U.

View Article and Find Full Text PDF

Prolonged treatment of an immunocompromised child with oseltamivir and zanamivir for A(H1N1)pdm09 virus infection led to the emergence of viruses carrying H275Y and/or E119G in the neuraminidase (NA). When phenotypically evaluated by NA inhibition, the dual H275Y-E119G substitution caused highly reduced inhibition by 4 NA inhibitors: oseltamivir, zanamivir, peramivir, and laninamivir.

View Article and Find Full Text PDF

National U.S. influenza antiviral surveillance incorporates data generated by neuraminidase (NA) inhibition (NI) testing of isolates supplemented with NA sequence analysis and pyrosequencing analysis of clinical specimens.

View Article and Find Full Text PDF

We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013-14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance-conferring neuraminidase substitution.

View Article and Find Full Text PDF

Background: Assessing susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) is primarily done in NA inhibition (NI) assays, supplemented by NA sequence analysis. However, two factors present challenges for NI assay data interpretation: lack of established IC50 values indicative of clinically relevant resistance and insufficient harmonization of NI testing methodologies among surveillance laboratories. In 2012, the WHO working group on influenza antiviral susceptibility (WHO-AVWG) developed criteria to facilitate consistent interpretation and reporting of NI assay data.

View Article and Find Full Text PDF

Assessment of drug susceptibility has become an integral part of influenza virus surveillance. In this study, we describe the drug resistance profile of influenza A(H3N2) virus, A/Mississippi/05/2011, collected from a patient treated with oseltamivir and detected via surveillance. An MDCK cell-grown isolate of this virus exhibited highly reduced inhibition by the neuraminidase (NA) inhibitors (NAIs) oseltamivir (8,005-fold), zanamivir (813-fold), peramivir (116-fold), and laninamivir (257-fold) in the NA inhibition assay.

View Article and Find Full Text PDF

The QFlu prototype bioluminescence-based neuraminidase (NA) inhibition (NI) assay kit was designed to detect NA inhibitor (NAI)-resistant influenza viruses at point of care. Here, we evaluated its suitability for drug susceptibility assessment at a surveillance laboratory. A comprehensive panel of reference viruses (n = 14) and a set of 90 seasonal influenza virus A and B isolates were included for testing with oseltamivir and/or zanamivir in the QFlu assay using the manufacturer-recommended protocol and a modified version attuned to surveillance requirements.

View Article and Find Full Text PDF

Background: Neuraminidase (NA) inhibitors (NAIs) are currently the only antivirals effective against influenza infections due to widespread resistance to M2 inhibitors.

Methods: Influenza A and B viruses (n = 1079) collected worldwide between April 01, 2011, and September 30, 2011, were assessed for susceptibility to FDA-approved NAIs, oseltamivir and zanamivir, and investigational peramivir, using the fluorescent-based NA-Fluor™ Influenza Neuraminidase Assay Kit. A subset of viruses (n = 98) were tested for susceptibility to the investigational NAI, laninamivir.

View Article and Find Full Text PDF

Close monitoring of drug susceptibility among human influenza viruses was necessitated by widespread resistance to M2 inhibitors in influenza H1N1 (pre-pandemic and 2009 pandemic) and H3N2 viruses, and of oseltamivir resistance in pre-pandemic H1N1 viruses. The FDA-approved neuraminidase (NA) inhibitors (NAIs), oseltamivir and zanamivir, as well as investigational NAIs, peramivir and laninamivir, are currently the principal treatment options for managing influenza infection. However, there are challenges associated with assessing virus susceptibility to this class of drugs.

View Article and Find Full Text PDF

Neuraminidase inhibitors (NAIs) are presently the only effective antiviral drugs for treatment and chemoprophylaxis of influenza A and B infections, due to the high prevalence of resistance to the adamantane class of drugs among influenza A(H3N2) and A(H1N1) viruses, including the 2009 pandemic H1N1 strain. The limited pharmaceutical options currently available for control of influenza infections underscore the critical need for surveillance on NAI susceptibility of influenza viruses circulating globally. This chapter describes the fluorescent neuraminidase (NA) inhibition (NI) assay, a functional method used for assessing influenza virus susceptibility to NAIs.

View Article and Find Full Text PDF

Neuraminidase inhibitors (NAIs) represent a newer class of anti-influenza drugs. Widespread natural or acquired resistance to NAIs is a major public health concern as it limits pharmaceutical options available for managing seasonal and pandemic influenza virus infections. Molecular-based methods, such as pyrosequencing, sequencing, and PCR are rapid techniques for detecting known genetic markers of resistance, but they are unable to identify novel mutations that may confer resistance, or subtle differences in the susceptibility of viruses to the NAIs.

View Article and Find Full Text PDF

Sinclair swine develop an aggressive form of melanoma, which, in many cases, spontaneously regresses after a complete metastatic phase. We used Affymetrix GeneChip® Porcine Genome Arrays consisting of 24 123 probe sets to compare gene expression in white blood cells (WBCs) and various tissues including the liver, lungs, inguinal lymph nodes and spleen harvested from a Sinclair piglet afflicted by melanoma at birth and exhibiting metastatic lesions at weaning (6 weeks) with those from a full-sibling piglet that showed no incidence of melanoma at birth and weaning. The highest number (3489; ∼14%) of significantly upregulated transcripts (fold change in gene expression ≥2.

View Article and Find Full Text PDF

During October 2010-July 2011, 1.0% of pandemic (H1N1) 2009 viruses in the United States were oseltamivir resistant, compared with 0.5% during the 2009-10 influenza season.

View Article and Find Full Text PDF

Neuraminidase inhibitors (NAIs) are vital in managing seasonal and pandemic influenza infections. NAI susceptibilities of virus isolates (n = 5540) collected during the 2008-2009 influenza season were assessed in the chemiluminescent neuraminidase inhibition (NI) assay. Box-and-whisker plot analyses of log-transformed IC(50)s were performed for each virus type/subtype and NAI to identify outliers which were characterized based on a statistical cutoff of IC(50) >3 interquartile ranges (IQR) from the 75(th) percentile.

View Article and Find Full Text PDF

During April 2009-June 2010, thirty-seven (0.5%) of 6,740 pandemic (H1N1) 2009 viruses submitted to a US surveillance system were oseltamivir resistant. Most patients with oseltamivir-resistant infections were severely immunocompromised (76%) and had received oseltamivir before specimen collection (89%).

View Article and Find Full Text PDF

Background: Antiviral drugs are an important option for managing infections caused by influenza viruses. This study assessed the drug susceptibility of 2009 pandemic influenza A (H1N1) viruses collected globally between April 2009 and January 2010.

Methods: Virus isolates were tested for adamantane susceptibility, using pyrosequencing to detect the S31N marker of adamantane resistance in the M2 protein and biological assays to assess viral replication in cell culture.

View Article and Find Full Text PDF

The clinical use of the neuraminidase inhibitor (NAI) oseltamivir is associated with the emergence of drug resistance resulting from subtype-specific neuraminidase (NA) mutations. The influenza A/Texas/12/2007 (H3N2) virus isolated from an oseltamivir-treated immunocompromised patient exhibited reduced susceptibility to oseltamivir in the chemiluminescent neuraminidase inhibition (NI) assay (approximately 60-fold increase in its 50% inhibitory concentration [IC(50)] compared to that for a control virus). When further propagated in cell culture, the isolate maintained reduced susceptibility to oseltamivir in both chemiluminescent and fluorescent NI assays (approximately 50- and 350-fold increases in IC(50), respectively).

View Article and Find Full Text PDF

The M2 blockers amantadine and rimantadine and the neuraminidase (NA) inhibitors (NAIs) oseltamivir and zanamivir are approved by the FDA for use for the control of influenza A virus infections. The 2009 pandemic influenza A (H1N1) viruses (H1N1pdm) are reassortants that acquired M and NA gene segments from a Eurasian adamantane-resistant swine influenza virus. NAI resistance in the H1N1pdm viruses has been rare, and its occurrence is mainly limited to oseltamivir-exposed patients.

View Article and Find Full Text PDF

The neuraminidase inhibitors (NAIs), oseltamivir and zanamivir, are essential for treatment and prevention of influenza A and B infections. Oseltamivir resistance among influenza A (H1N1) viruses rapidly emerged and spread globally during the 2007-2008 and 2008-2009 influenza seasons. Approximately 20% and 90% of viruses tested for NAI susceptibility at CDC during these seasons, respectively, were resistant to oseltamivir (IC(50) approximately 100-3000 time>those of sensitive viruses), based on the chemiluminescent NA inhibition assay.

View Article and Find Full Text PDF

The epidemiology, symptomology, and viral aetiology of endemic influenza remain largely uncharacterized in Cambodia. In December 2006, we established passive hospital-based surveillance to identify the causes of acute undifferentiated fever in patients seeking healthcare. Fever was defined as tympanic membrane temperature >38 degrees C.

View Article and Find Full Text PDF

Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses.

View Article and Find Full Text PDF

In the beginning of 2007-2008 Northern Hemisphere influenza season, the frequency of influenza A(H1N1) viruses bearing a previously defined oseltamivir resistance conferring amino acid change of Histidine to Tyrosine at position 274 (H274Y) of the neuraminidase (NA) increased dramatically. In order to rapidly detect such resistant viruses, an RT-PCR/restriction fragment length polymorphism (RT-PCR/RFLP) assay targeting amino acid 274 of the N1 NA molecule was developed to investigate the presence or absence of the H274Y mutation. The reverse primer was engineered to produce a BspHI site in the amplicon for oseltamivir-sensitive viruses with Histidine at position 274 (274H).

View Article and Find Full Text PDF

Context: During the 2007-2008 influenza season, oseltamivir resistance among influenza A(H1N1) viruses increased significantly for the first time worldwide. Early surveillance data suggest that the prevalence of oseltamivir resistance among A(H1N1) viruses will most likely be higher during the 2008-2009 season.

Objectives: To describe patients infected with oseltamivir-resistant influenza A(H1N1) virus and to determine whether there were any differences between these patients and patients infected with oseltamivir-susceptible A(H1N1) virus in demographic or epidemiological characteristics, clinical symptoms, severity of illness, or clinical outcomes.

View Article and Find Full Text PDF