Publications by authors named "Okiko Habara"

Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo.

View Article and Find Full Text PDF

In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA.

View Article and Find Full Text PDF

Steroid hormones are crucial regulators of life-stage transitions during development in animals. However, the molecular mechanisms by which developmental transition through these stages is coupled with optimal metabolic homeostasis remains poorly understood. Here, we demonstrate through mathematical modelling and experimental validation that ecdysteroid-induced metabolic remodelling from resource consumption to conservation can be a successful life-history strategy to maximize fitness in Drosophila larvae in a fluctuating environment.

View Article and Find Full Text PDF

The polysaccharide glycogen is an evolutionarily conserved storage form of glucose. However, the physiological significance of glycogen metabolism on homeostatic control throughout the animal life cycle remains incomplete. Here, we describe mutants that have defective glycogen metabolism.

View Article and Find Full Text PDF

Adapting to changes in food availability is a central challenge for survival. Glucose is an important resource for energy production, and therefore many organisms synthesize and retain sugar storage molecules. In insects, glucose is stored in two different forms: the disaccharide trehalose and the branched polymer glycogen.

View Article and Find Full Text PDF

The genetically amenable organism Drosophila melanogaster has been estimated to have 14,076 protein coding genes in the genome, according to the flybase release note R5.13 (http://flybase.bio.

View Article and Find Full Text PDF