An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress.
View Article and Find Full Text PDFUnlabelled: Although heme iron is an important form of dietary iron, its intestinal absorption mechanism remains elusive. Our previous study revealed that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) markedly inhibited intestinal heme iron absorption by reducing the basolateral iron export in Caco-2 cells. The aim of this study was to examine whether small amounts of EGCG, GSE, and green tea extract (GT) could inhibit heme iron absorption, and to test whether the inhibitory action of polyphenols could be offset by ascorbic acid.
View Article and Find Full Text PDFWe previously reported that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) at high concentration nearly blocked intestinal iron transport across the enterocyte. In this study, we aimed to determine whether small amounts of EGCG, GSE, and green tea extract (GT) are capable of inhibiting iron absorption, to examine if ascorbic acid counteracts the inhibitory action of polyphenols on iron absorption, and to explore the mechanisms of polyphenol-mediated apical iron uptake and basolateral iron release. An(55)Fe absorption study was conducted by adding various concentrations of EGCG, GSE, and GT using Caco-2 intestinal cells.
View Article and Find Full Text PDFPolyphenolic compounds are known to possess many beneficial health effects, including the antioxidative activities of scavenging reactive oxygen species and chelating metals, such as iron and zinc. Tea and red wine are thought to be important sources of these compounds. However, some polyphenolic compounds can also reduce the absorption of iron, and possibly other trace metals, when included in a diet.
View Article and Find Full Text PDFIron is an essential trace metal in the human diet because of its role in a number of metabolic processes including oxygen transport. In the diet, iron is present in two fundamental forms, heme and non-heme iron. This article presents a brief overview of the molecular mechanisms of intestinal iron absorption and its regulation.
View Article and Find Full Text PDFBecause dietary polyphenolic compounds have a wide range of effects in vivo and vitro, including chelation of metals such as iron, it is prudent to test whether the regular consumption of dietary bioactive polyphenols impair the utilization of dietary iron. Because our previous study showed the inhibitory effect of (-) -epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) on nonheme iron absorption, we investigated whether EGCG and GSE also affect iron absorption from heme. The fully differentiated intestinal Caco-2 cells grown on microporous membrane inserts were incubated with heme (55)Fe in uptake buffer containing EGCG or GSE in the apical compartment for 7 h.
View Article and Find Full Text PDFIron is one of the essential micronutrients, and as such, is required for growth, development, and normal cellular functioning. In contrast to some other micronutrients such as water-soluble vitamins, there is a significant danger of toxicity if excessive amounts of iron accumulate in the body. A finely tuned feedback control system functions to limit this excessive accumulation by limiting absorption of iron.
View Article and Find Full Text PDFHepatic iron deposition unrelated to hereditary hemochromatosis occurs commonly in cirrhosis but the pathogenesis of this condition is unknown. The aim of this study was to compare the expression of genes involved in the regulation of iron metabolism in cirrhotic (n=22) and control human livers (n=5). Transcripts were quantitated by real-time RT-PCR and protein levels were assessed by western blot.
View Article and Find Full Text PDFThere is persuasive epidemiological evidence that regular intake of dietary bioactive polyphenolic compounds promotes human health. Because dietary polyphenolic compounds have a wide range of effects in vivo and vitro, including chelation of metals such as iron, it is prudent to test whether the regular consumption of bioactive polyphenolic components impair the utilization of dietary iron. We examined the influence of the dietary polyphenols (-) -epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) on transepithelial iron transport in Caco-2 intestinal cells.
View Article and Find Full Text PDFAn iron exporter ferroportin-1 (FPN-1) and a multi-copper oxidase hephaestin (Heph) are predicted to be expressed on the basolateral membrane of the enterocyte and involved in the processes of iron export across the basolateral membrane of the enterocyte. However, it is not clear where these proteins are exactly located in the intestinal absorptive cell. We examined cellular localization of FPN-1 and Heph in the intestinal absorptive cells using the fully differentiated Caco-2 cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2002
The influence of copper status on Caco-2 cell apical iron uptake and transepithelial transport was examined. Cells grown for 7-8 days in media supplemented with 1 microM CuCl(2) had 10-fold higher cellular levels of copper compared with control. Copper supplementation did not affect the integrity of differentiated Caco-2 cell monolayers grown on microporous membranes.
View Article and Find Full Text PDF