Genetic improvement of general resilience of dairy cattle is deemed as a part of the solution to low dairy productivity and poor cattle adaptability in sub-Saharan Africa (SSA). While indicators of general resilience have been proposed and evaluated in other regions, their applicability in SSA remains unexplored. This study sought to test the viability of utilizing log-transformed variance (LnVar), autocorrelation (r), and skewness (Skew) of deviations in milk yield as indicators of general resilience of dairy cows performing in the tropical environment of Kenya.
View Article and Find Full Text PDFThe African livestock sector plays a key role in improving the livelihoods of people through the supply of food, improved nutrition and consequently health. However, its impact on the economy of the people and contribution to national GDP is highly variable and generally below its potential. This study was conducted to assess the current state of livestock phenomics and genetic evaluation methods being used across the continent, the main challenges, and to demonstrate the effects of various genetic models on the accuracy and rate of genetic gain that could be achieved.
View Article and Find Full Text PDFLocal chicken populations belonging to five villages in two geographically separated provinces of Sri Lanka were analyzed using 20 microsatellite markers to determine the genetic diversity of local chickens. Population genetic parameters were estimated separately for five populations based on geographic locations and for eight populations based on phenotypes, such as naked neck, long legged, crested or crown, frizzle feathered, Giriraj, commercial layer, crossbreds, and non-descript chicken. The analysis revealed that there was a high genetic diversity among local chickens with high number of unique alleles, mean number of alleles per locus (MNA), and total number of alleles per locus per population.
View Article and Find Full Text PDFThe genomes of crossbred (admixed) individuals are a mosaic of ancestral haplotypes formed by recombination in each generation. The proportion of these ancestral haplotypes in certain genomic regions can be responsible for either susceptibility or tolerance against pathogens, and for performances in production traits. Using a medium-density genomic marker panel from the Illumina Bovine SNP50 BeadChip, we estimated individual admixture proportions for Baoulé x Zebu crossbred cattle in Burkina Faso, which were tested for trypanosome infection by direct ELISA from blood samples.
View Article and Find Full Text PDFIn this study, single-SNP GWAS analyses were conducted to find regions affecting tolerance against trypanosomosis and morphometrics traits in purebred and crossbred Baoulé cattle of Burkina Faso. The trypanosomosis status (positive and negative) and a wide set of morphological traits were recorded for purebred Baoulé and crossbred Zebu x Baoulé cattle, and genotyped with the Illumina Bovine SNP50 BeadChip. After quality control, 36,203 SNPs and 619 animals including 343 purebred Baoulé and 279 crossbreds were used for the GWAS analyses.
View Article and Find Full Text PDFKnowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation.
View Article and Find Full Text PDFBackground: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood.
View Article and Find Full Text PDFHigh-throughput genomic markers provide an opportunity to assess important indicators of genetic diversity for populations managed in livestock breeding programs. While well-structured breeding programs are common in developed countries, in developing country situations, especially in West Africa, on-farm performance and pedigree recordings are rare, and thus, genomic markers provide insights to the levels of genetic diversity, inbreeding and introgression by other breeds. In this study, we analysed key population parameters such as population structure, admixture and levels of inbreeding in three neighbouring populations of African taurine and taurine × Zebu crosses managed by community-based breeding programs in the South-West of Burkina Faso.
View Article and Find Full Text PDFCattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750-1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDespite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar.
View Article and Find Full Text PDFIndigenous goats make significant contributions to Cameroon's national and local economy, but little effort has been devoted to identifying the populations. Here, we assessed the genetic diversity and demographic dynamics of Cameroon goat populations using mitochondrial DNA (two populations) and autosomal markers (four populations) generated with the Caprine 50K SNP chip. To infer genetic relationships at continental and global level, genotype data on six goat populations from Ethiopia and one population each from Egypt, Morocco, Iran, and China were included in the analysis.
View Article and Find Full Text PDFFront Genet
October 2018
In most smallholder dairy programmes, farmers are not fully benefitting from the genetic potential of their dairy cows. This is in part due to the mismatch between the available genotypes and the environment, including management, in which the animals perform. With sparse performance and pedigree records in smallholder dairy farms, the true degree of baseline genetic variability and breed composition is not known and hence rendering any genetic improvement initiative difficult to implement.
View Article and Find Full Text PDFThe Horn of Africa forms one of the two main historical entry points of domestics into the continent and Ethiopia is particularly important in this regard. Through the analysis of mitochondrial DNA (mtDNA) -loop region in 309 individuals from 13 populations, we reveal the maternal genetic variation and demographic dynamics of Ethiopian indigenous goats. A total of 174 variable sites that generated 231 haplotypes were observed.
View Article and Find Full Text PDFSince domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods.
View Article and Find Full Text PDFBackground: Smallholder dairy farming in much of the developing world is based on the use of crossbred cows that combine local adaptation traits of indigenous breeds with high milk yield potential of exotic dairy breeds. Pedigree recording is rare in such systems which means that it is impossible to make informed breeding decisions. High-density single nucleotide polymorphism (SNP) assays allow accurate estimation of breed composition and parentage assignment but are too expensive for routine application.
View Article and Find Full Text PDFAs African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light-colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross-population composite likelihood ratio (XP-CLR) and cross-population extended haplotype homozygosity (XP-EHH) statistical methods.
View Article and Find Full Text PDFBackground: Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied.
Results: We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle.
Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.
Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds.
Background: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds.
View Article and Find Full Text PDFCrossing local breeds with exotic breeds may be an option for increased livestock productivity. However, there is a risk for endangerment of the local breeds. One such case is in Kenya where the imported Dorper breed is used for crossbreeding with Red Maasai sheep.
View Article and Find Full Text PDFThe criteria for identification, selection and kinship assignment of Ankole cattle and their roles to pastoralists were studied on 248 farms in Kiboga, Mbarara, Mpigi and Sembabule districts of Uganda using a questionnaire, administered during one-to-one interviews. Farms were randomly sampled along transects originating from the headquarters of each of the 19 sub-counties studied. We found that male Ankole cattle are reared for income from sales, meat for home use and ceremonies, aesthetic value and to maintain cultural heritage.
View Article and Find Full Text PDF