Publications by authors named "Okba Taouali"

This paper proposes an improved Reduced Kernel Principal Component Analysis (RKPCA) for handling nonlinear dynamic systems. The proposed method is entitled Moving Window Reduced Kernel Principal Component Analysis (MW-RKPCA). It consists firstly in approximating the principal components (PCs) of the KPCA model by a reduced data set that approaches "properly" the system behavior in the order to elaborate an RKPCA model.

View Article and Find Full Text PDF

This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors.

View Article and Find Full Text PDF

This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the Singular Value Decomposition (SVD) technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.

View Article and Find Full Text PDF