Endothelial cell dysfunction can lead to various vascular diseases. Blood flow disorder is a common symptom of vascular diseases. Regenerative angiogenesis, which involves transplanting vascular cells or stem cells into the body to shape new vasculature, can be a good therapeutic strategy.
View Article and Find Full Text PDFHeterozygous variants of MATN3 is one of the common causes of multiple epiphyseal dysplasia (MED). Here we report three individuals from two unrelated families who harbor compound heterozygous variants in MATN3 (p.Arg121Trp and p.
View Article and Find Full Text PDFExcessive activity of osteoclasts(OCs) lead to bone resorption in chronic inflammatory conditions. The use of natural compounds to target OCs offers significant promise in the treatment or prevention of OC-associated diseases. Irilin D (IRD), a natural isoflavone derived from Belamcanda chinensis (L.
View Article and Find Full Text PDFRAS activation is a key determinant of breast cancer progression and metastasis. However, the role of the interaction among exosomes, RAS and microRNAs (miRNAs/miRs) in the osteolytic bone metastasis of breast cancer remains unclear. Therefore, the present study aimed to examine the role of activated RAS (KRAS, HRAS and NRAS) in the release of exosome‑mediated osteoclastogenic miRNAs and to elucidate their functional role in bone microenvironment remodeling and .
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) play a pivotal role in tumor progression by mediating intercellular communication in the tumor microenvironment (TME). Syntenin-1 induces malignant tumor progression in various types of human cancers, including human lung cancer and regulates biogenesis of sEVs. However, the function of syntenin-1-regulated sEVs and miRNAs in sEVs remains to be elucidated.
View Article and Find Full Text PDFShwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood.
View Article and Find Full Text PDFAn 11-year-old Korean boy presented with short stature, hip dysplasia, radial head dislocation, carpal coalition, genu valgum, and fixed patellar dislocation and was clinically diagnosed with Steel syndrome. Scrutinizing the trio whole-exome sequencing data revealed novel compound heterozygous mutations of COL27A1 (c.[4229_4233dup]; [3718_5436del], p.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) signaling pathways are well-recognized for their role in proliferation and epithelial-mesenchymal transition (EMT) of cancer cells, but much less is understood about their contribution to interactions with other signaling events. Recent studies have indicated that crosstalk between TGF-β and Ras signaling makes a contribution to TGF-β-mediated EMT. Here, we demonstrate that Jumonji domain containing-3 (JMJD3 also called KDM6B) promotes TGF-β-mediated Smad activation and EMT in Ras-activated lung cancer cells.
View Article and Find Full Text PDFThe phenotypic spectrum of Type 2 collagenopathies ranges from lethal achondrogenesis Type 2 to milder osteoarthritis with mild chondrodysplasia. All of them are monoallelic except for the two recent reports showing that biallelic variants in COL2A1 can cause spondyloepiphyseal dysplasia congenita in two children. Here we report two additional families with homozygous variants, c.
View Article and Find Full Text PDFBackground: X-linked spondyloepiphyseal dysplasia tarda (SEDT-XL) is a skeletal disorder characterized by defective structures of vertebral bodies and/or of epiphyses of the long bones, resulting in moderately short stature and early joint degeneration. TRAPPC2 gene, which is important for collagen secretion, has been reported as causative for SEDT-XL.
Case Presentation: Here, we report two variants of TRAPPC2 gene of SEDT-XL patients, a missense variant of start codon, c.
Background: Many bone-related diseases such as osteoporosis and rheumatoid arthritis are commonly associated with the excessive activity of osteoclasts. Polyscias fruticosa has been used as traditional medicine for the treatment of ischemia and inflammation and also eaten as a salad. However, its effect on the bone related diseases has not been investigated yet.
View Article and Find Full Text PDFSPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia.
View Article and Find Full Text PDFDesoxyrhapontigenin (DRG), a stilbene compound from Rheum undulatum, has been found to exhibit various pharmacological activities, however, its impact on osteoclast formation has not been investigated. The present study investigated the effect of DRG on receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation in mouse bone marrow macrophages (BMMs) and inflammation‑induced bone loss in vivo. BMMs or RAW264.
View Article and Find Full Text PDFBackground: It is known that type I collagenopathy has a broad-spectrum phenotypic variability. Here, we report a case of a Korean girl with a heterozygous COL1A1 mutation who had an atypical presentation.
Case Presentation: A 26-month-old girl presented with delayed motor development and failure to thrive.
We report transient proximal and distal femoral metaphyseal striations that have not previously been described in autosomal dominant brachyolmia. The pelvis/hip radiograph of a 13-year-old boy demonstrated bilaterally symmetrical proximal femoral metaphyseal vertical striations. Additional vertical striations were also observed at the distal femur and proximal tibia metaphysis.
View Article and Find Full Text PDFSince the original description of the IARS2-related cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, skeletal dysplasia syndrome (CAGSSS; OMIM 616007) in an extended consanguineous family of French-Canadian descent, no further patients have been reported. IARS2 (OMIM 612801) encodes the mitochondrial isoleucine-tRNA synthetase which belongs to the class-I aminoacyl-tRNA synthetase family, and has been implicated in CAGSSS and a form of Leigh syndrome. Here, we report on a female Danish patient with a novel homozygous IARS2 mutation, p.
View Article and Find Full Text PDFSmith-McCort dysplasia (SMC OMIM 615222) and Dyggve-Melchior-Clausen dysplasia (DMC OMIM 223800) are allelic skeletal dysplasias caused by homozygous or compound heterozygous mutations in DYM (OMIM 607461). Both disorders share the same skeletal phenotypes characterized by spondylo-epi-metaphyseal dysplasia with distinctive lacy ilia. The difference rests on the presence or absence of intellectual disability, that is, intellectual disability in DMC and normal cognition in SMC.
View Article and Find Full Text PDFThe purpose of this study was to compare the use of conventional ultrasound (US) and real-time elastography (RTE) in Kikuchi disease (KD, n = 48) and malignant cervical lymphadenopathy (n = 100) and to evaluate the role of RTE in patients suspected of having KD. In univariate analysis, conventional US revealed each benign feature more frequently in KD than in malignant lymphadenopathy (p < 0.05).
View Article and Find Full Text PDFHypophosphatasia is a rare hereditary disorder characterized by defective bone and tooth mineralization and deficiency of tissue non-specific alkaline phosphatase activity. The prognosis for the infantile form is poor, with approximately 50% of patients dying within the first year of life from respiratory failure. We describe the clinical and biochemical findings as well as the molecular analysis of a Korean boy with infantile hypophosphatasia and present a literature review.
View Article and Find Full Text PDFSpondyloepimetaphyseal dysplasias (SEMDs) comprise a heterogeneous group of autosomal-dominant and autosomal-recessive disorders. An apparent X-linked recessive (XLR) form of SEMD in a single Italian family was previously reported. We have been able to restudy this family together with a second family from Korea by segregating a severe SEMD in an X-linked pattern.
View Article and Find Full Text PDFPachydermoperiostosis (PDP), or primary hypertrophic osteoarthropathy, is a rare genetic disease affecting both skin and bones. Both autosomal dominant with incomplete penetrance and recessive inheritance of PDP have been previously confirmed. Recently, hydroxyprostaglandin dehydrogenase (HPGD) and solute carrier organic anion transporter family member 2A1 (SLCO2A1) were reported as pathogenic genes responsible for PDP.
View Article and Find Full Text PDFAxial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome.
View Article and Find Full Text PDFSOFT syndrome (MIM614813) is an extremely rare primordial dwarfism characterized by short stature, onychodysplasia, facial dysmorphism and hypotrichosis, which is caused by biallelic mutations in the POC1A gene. Only 19 patients with mutation-confirmed SOFT syndrome have been reported to date, all of whom carried homozygous variants that were strongly associated with consanguineous marriages. We report an 8.
View Article and Find Full Text PDFNine terpenylated coumarins, namely 7-[(E)-3',7'-dimethyl-6'-oxo-2',7'-octadienyl]oxy-coumarin (1), schinilenol (2), schinindiol (3), collinin (4), 7-[(E)-7'-hydroxy-3',7'-dimethy-locta-2',5'-dienyloxy]-coumarin (5), 8-methoxyanisocoumarin (6), 7-(6'R-hydroxy-3',7'-dimethyl-2'E,7'-octadienyloxy)coumarin (7), (E)-4-methyl-6-(coumarin-7'-yloxy)hex-4-enal (8), and aurapten (9), along with a 4-quinolone alkaloid (10) and integrifoliodiol (11), were isolated from the leaves of Zanthoxylum schinifolium. Of the isolates, compounds 4 and 7 potentially inhibited NO production in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells, with IC50 values of 5.
View Article and Find Full Text PDF