Although stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, PRRX1, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. PRRX1 orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-β signaling by remodeling a super-enhancer landscape.
View Article and Find Full Text PDFNeuronal nitric oxide synthase (nNOS) has various roles as a neurotransmitter. However, studies to date have produced insufficient data to fully support the correlation between nNOS and bowel motility. This study aimed to investigate the correlation between nNOS expression and gastrointestinal (GI) tract motility using a stress-induced neonatal maternal separation (NMS) mouse model.
View Article and Find Full Text PDFBackground: Small animals that show a deficiency in klotho exhibit extremely shortened life span with multiple aging-like phenotypes. However, limited information is available on the function of klotho in large animals such as pigs.
Results: In an attempt to produce klotho knockout pigs, an sgRNA specific for klotho (targeting exon 3) was designed and Cas9-sgRNA ribonucleoproteins were transfected into porcine fibroblasts.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThyroid hormone (TH) has long been believed to play a minor role in male reproduction. However, evidences from experimental model of thyrotoxicosis or hypothyroidism suggests its role in spermatogenesis. Cellular action of TH requires membrane transport via specific transporters such as monocarboxylate transporter 8 (MCT8).
View Article and Find Full Text PDFIn homology-directed repair, mediated knock-in single-stranded oligodeoxynucleotides (ssODNs) can be used as a homologous template and present high efficiency, but there is still a need to improve efficiency. Previous studies have mainly focused on controlling double-stranded break size, ssODN stability, and the DNA repair cycle. Nevertheless, there is a lack of research on the correlation between the cell cycle and single-strand template repair (SSTR) efficiency.
View Article and Find Full Text PDFThe CRISPR/Cas9 (SpCas9) system is now widely utilized to generate genome engineered mice; however, some studies raised issues related to off-target mutations with this system. Herein, we utilized the Cas9 (CjCas9) system to generate knockout mice. We designed sgRNAs targeting mouse or and microinjected into zygotes along with CjCas9 mRNA.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer.
View Article and Find Full Text PDFThe potential of induced pluripotent stem (iPS) cells, which have self-renewal ability and can differentiate into three germ layers, led us to hypothesize that iPS cells in pigs can be useful and suitable source for producing transgenic pigs. In this study, we generated iPS-like cells using doxycycline-inducible piggyBac (PB) expression vectors encoding porcine 4 transcription factors. After transfection, transfected cells were cultured until the formation of outgrowing colonies taking least of 7-10 days.
View Article and Find Full Text PDFThe CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components.
View Article and Find Full Text PDFThe CRISPR/Cas9 system is widely applied in genome engineering due to its simplicity and versatility. Although this has revolutionized genome-editing technology, knockin animal generation via homology directed repair (HDR) is not as efficient as nonhomologous end-joining DNA-repair-dependent knockout. Although its double-strand break activity may vary, Cas9 derived from Streptococcus pyogenens allows robust design of single-guide RNAs (sgRNAs) within the target sequence; However, prescreening for different sgRNA activities delays the process of transgenic animal generation.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited.
View Article and Find Full Text PDFThe combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties.
View Article and Find Full Text PDFMonkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2015
Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have the ability to differentiate into multi-lineage cells, which confers great promise for use in regenerative medicine. In this study, MSCs were isolated from adipose tissue, bone marrow, ear skin, lung, and abdominal skin of miniature pigs (mpMSCs), and the optimal medium (DMEM/F12-Glutamax) was selected for the culturing of mpMSCs. As a result, proliferation of the mpMSCs derived from all tissues was steadily increased when cultured with DMEM/F12-Glutamax during 14 consecutive passages.
View Article and Find Full Text PDFSomatic cell nuclear transfer (SCNT) is a cost-effective technique for producing transgenic pigs. However, abnormalities in the cloned pigs might prevent use these animals for clinical applications or disease modeling. In the present study, we generated several cloned pigs.
View Article and Find Full Text PDFGenome-editing technologies are considered to be an important tool for generating gene knockout cattle models. Here, we report highly efficient disruption of a chromosomally integrated eGFP gene in bovine somatic cells using RNA-guided endonucleases, a new class of programmable nucleases developed from a bacterial Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. In the present study, we obtained homogenously eGFP-expressing primary fibroblasts from cloned bovine transgenic embryonic tissues and employed them for further analysis.
View Article and Find Full Text PDFOctamer-binding transcription factor 4 (Oct4) is a critical molecule for the self-renewal and pluripotency of embryonic stem cells. Recent reports have shown that Oct4 also controls cell-cycle progression and enhances the proliferation of various types of cells. As the high proliferation of donor fibroblasts is critical to the production of transgenic pigs, using the somatic cell nuclear transfer technique, we analysed the effect of Oct4 overexpression on the proliferation of porcine fibroblasts and embryos.
View Article and Find Full Text PDFAsian-Australas J Anim Sci
March 2014
To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer.
View Article and Find Full Text PDFGeneration of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis.
View Article and Find Full Text PDFIn pig-to-primate xenotransplantation, multiple transgenic pigs are required to overcome a series of transplant rejections. The generation of multiple transgenic pigs either by breeding or the introduction of several mono-cistronic vectors has been hampered by the differential expression patterns of the target genes. To achieve simultaneous expression of multiple genes, a poly-cistronic expression system using the 2A peptide derived from the Thosea asigna virus (T2A) can be considered an alternative choice.
View Article and Find Full Text PDFThe presence of glutamine (Gln) in in vitro maturation (IVM) and in vitro culture (IVC) medium is a more potent factor for improving porcine oocyte and embryo development than other amino acids. However Gln is inherently unstable and spontaneously breaks down into ammonia, and therefore interferes with proper development. To avoid this adverse effect, Gln was replaced in the present study with its stable dipeptide derivative alanyl-glutamine (Ala-Gln) and the effects of this replacement on porcine IVM and IVC were evaluated.
View Article and Find Full Text PDFQuercetin is a plant-derived flavonoid found in fruits or vegetables that has antioxidant properties and acts as a free radical scavenger. We investigated the effects of quercetin on porcine oocyte nuclear maturation and embryonic development after parthenogenetic activation. We then evaluated the antioxidant activities of quercetin by measuring reactive oxygen species (ROS) levels in matured oocytes.
View Article and Find Full Text PDF