Publications by authors named "Oijen A"

Live-cell imaging using fluorescence microscopy enables researchers to study cellular processes in unprecedented detail. These techniques are becoming increasingly popular among microbiologists. The emergence of microfluidics and deep learning has significantly increased the amount of quantitative data that can be extracted from such experiments.

View Article and Find Full Text PDF

Pentatricopeptide repeat proteins (PPR) are a large family of modular RNA-binding proteins, whereby each module can be modified to bind to a specific ssRNA nucleobase. As such, there is interest in developing 'designer' PPRs (dPPRs) for a range of biotechnology applications, including diagnostics or in vivo localization of ssRNA species; however, the mechanistic details regarding how PPRs search for and bind to target sequences is unclear. To address this, we determined the structure of a dPPR bound to its target sequence and used two- and three-color single-molecule fluorescence resonance energy transfer to interrogate the mechanism of ssRNA binding to individual dPPRs in real time.

View Article and Find Full Text PDF

Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists.

View Article and Find Full Text PDF

Genome maintenance comprises a group of complex and interrelated processes crucial for preserving and safeguarding genetic information within all organisms. Key aspects of genome maintenance involve DNA replication, transcription, recombination, and repair. Improper regulation of these processes could cause genetic changes, potentially leading to antibiotic resistance in bacterial populations.

View Article and Find Full Text PDF

To date, the scientific literature on health variables for antimicrobial resistance (AMR) has been investigated throughout several systematic reviews, often with a focus on only one aspect of the One Health variables: human, animal, or environment. The aim of this umbrella review is to conduct a systematic synthesis of existing evidence on AMR in humans in the community from a One Health perspective. PubMed, EMBASE, and CINAHL were searched on "antibiotic resistance" and "systematic review" from inception until 25 March 2022 (PROSPERO: CRD42022316431).

View Article and Find Full Text PDF

The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example.

View Article and Find Full Text PDF
Article Synopsis
  • DNA replication happens on crowded and often damaged DNA, leading to potential issues for the replication process.
  • Researchers have developed single-molecule fluorescence imaging techniques to study DNA replication and stalled replication forks in detail.
  • Using the dCas9 protein to create specific barriers, they visualized how the E. coli replisome interacts with these blockages, enhancing understanding of how replisomes stall and how they can be rescued or restarted.
View Article and Find Full Text PDF

The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures.

View Article and Find Full Text PDF

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.

View Article and Find Full Text PDF

Single-stranded DNA gaps form within the chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live cells.

View Article and Find Full Text PDF

When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli.

View Article and Find Full Text PDF

The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN.

View Article and Find Full Text PDF
Article Synopsis
  • Genome duplication in E. coli faces challenges from DNA-binding proteins, which can hinder the replication process.
  • The helicase Rep helps overcome these obstacles by displacing roadblocks during DNA replication, but its exact role and interaction with the replisome are not fully understood.
  • Real-time imaging reveals that Rep continuously monitors replication activity and can effectively rescue stalled forks by removing roadblocks, with the efficiency of this process dependent on the stability of the roadblocks.
View Article and Find Full Text PDF

The ability of heat shock protein 70 (Hsp70) molecular chaperones to remodel the conformation of their clients is central to their biological function; however, questions remain regarding the precise molecular mechanisms by which Hsp70 machinery interacts with the client and how this contributes toward efficient protein folding. Here, we used total internal reflection fluorescence (TIRF) microscopy and single-molecule fluorescence resonance energy transfer (smFRET) to temporally observe the conformational changes that occur to individual firefly luciferase proteins as they are folded by the bacterial Hsp70 system. We observed multiple cycles of chaperone binding and release to an individual client during refolding and determined that high rates of chaperone cycling improves refolding yield.

View Article and Find Full Text PDF

CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function.

View Article and Find Full Text PDF

Objectives: Efforts to monitor and combat antimicrobial resistance (AMR) are typically focused on the hospital-based laboratory setting. The aim of this study was to longitudinally examine and compare trends in AMR among urine Escherichia coli isolates from a private community-based laboratory and a public hospital-based laboratory in an Australian local health district.

Methods: A total of 108 262 urine E.

View Article and Find Full Text PDF

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism.

View Article and Find Full Text PDF

Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a method for single-molecule protein sequencing that accurately identifies peptide sequences in real time.
  • This technique uses dye-labeled amino acid recognizers and aminopeptidases to probe single peptides while recording fluorescence data on a semiconductor chip.
  • The method shows potential for detailed analysis of proteins, including the ability to detect single amino acid changes and modifications, paving the way for more accessible proteomic research.
View Article and Find Full Text PDF

Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load.

View Article and Find Full Text PDF

Single-molecule imaging studies using long linear DNA substrates have revealed unanticipated insights into the dynamics of multi-protein systems. The use of long DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behavior of proteins over distances accessible by fluorescence microscopy. Generalized methods can be exploited to generate and optimize a variety of linear DNA substrates with plasmid DNA as a simple starting point using standard biochemical techniques.

View Article and Find Full Text PDF

Background: Staphylococcus aureus is associated with significant mortality and increased burden on the healthcare system. Relatively few reliable estimates are available regarding the impact of meticillin-resistant S. aureus (MRSA) infection compared with meticillin-susceptible S.

View Article and Find Full Text PDF

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens.

View Article and Find Full Text PDF

Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear.

View Article and Find Full Text PDF

Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange.

View Article and Find Full Text PDF