Among iron oxide phases, magnetite (FeO) is often the preferred one for nanotechnological and biomedical applications because of its high saturation magnetization and low toxicity. Although there are several synthetic routes that attempt to reach magnetite nanoparticles (NPs), they are usually referred as "IONPs" (iron oxide NPs) due to the great difficulty in obtaining the monophasic and stoichiometric FeO phase. Added to this problem is the common increase of size/shape polydispersity when larger NPs ( > 20 nm) are synthesized.
View Article and Find Full Text PDFThe currently existing magnetic hyperthermia treatments usually need to employ very large doses of magnetic nanoparticles (MNPs) and/or excessively high excitation conditions ( × > 10 A/m s) to reach the therapeutic temperature range that triggers cancer cell death. To make this anticancer therapy truly minimally invasive, it is crucial the development of improved chemical routes that give rise to monodisperse MNPs with high saturation magnetization and negligible dipolar interactions. Herein, we present an innovative chemical route to synthesize Zn-doped magnetite NPs based on the thermolysis of two kinds of organometallic precursors: (i) a mixture of two monometallic oleates (FeOl + ZnOl), and (ii) a bimetallic iron-zinc oleate (Fe Zn Ol).
View Article and Find Full Text PDFAim: The Specific Absorption Rate (SAR) is the key parameter to optimize the effectiveness of magnetic nanoparticles in magnetic hyperthermia. AC magnetometry arises as a powerful technique to quantify the SAR by computing the hysteresis loops' area. However, currently available devices produce quite limited magnetic field intensities, below 45mT, which are often insufficient to obtain major hysteresis loops and so a more complete and understandable magneticcharacterization.
View Article and Find Full Text PDFLocal heat generation from magnetic nanoparticles (MNPs) exposed to alternating magnetic fields can revolutionize cancer treatment. However, the application of MNPs as anticancer agents is limited by serious drawbacks. Foremost among these are the fast uptake and biodegradation of MNPs by cells and the unpredictable magnetic behavior of the MNPs when they accumulate within or around cells and tissues.
View Article and Find Full Text PDFMost studies on magnetic nanoparticle-based hyperthermia utilize iron oxide nanoparticles smaller than 20 nm, which are intended to have superparamagnetic behavior (SP-MNPs). However, the heating power of larger magnetic nanoparticles with non-fluctuating or fixed magnetic dipoles (F-MNPs) can be significantly greater than that of SP-MNPs if high enough fields (H > 15 mT) are used. But the synthesis of larger single nanocrystals of magnetite (FeO) with a regular shape and narrow size distribution devoid of secondary phases remains a challenge.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2018
To improve the selectivity of magnetic nanoparticles for tumor treatment by hyperthermia, FeO nanoparticles have been functionalized with a peptide of the type arginine-glycine-aspartate (RGD) following a "click" chemistry approach. The RGD peptide was linked onto the previously coated nanoparticles in order to target αβ integrin receptors over-expressed in angiogenic cancer cells. Different coatings have been analyzed to enhance the biocompatibility of magnetic nanoparticles.
View Article and Find Full Text PDFThis work reports important advances in the study of magnetic nanoparticles (MNPs) related to their application in different research fields such as magnetic hyperthermia. Nanotherapy based on targeted nanoparticles could become an attractive alternative to conventional oncologic treatments as it allows a local heating in tumoral surroundings without damage to healthy tissue. RGD-peptide-conjugated MNPs have been designed to specifically target αβ receptor-expressing cancer cells, being bound the RGD peptides by "click chemistry" due to its selectivity and applicability.
View Article and Find Full Text PDF