Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation.
View Article and Find Full Text PDFNa,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops.
View Article and Find Full Text PDFNa,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood.
View Article and Find Full Text PDFThe sodium pump, or Na,K-ATPase, exports three intracellular sodium ions in exchange for two extracellular potassium ions. In the high resolution structure of the related calcium pump, two cation-binding sites have been identified. The two corresponding sites in the sodium pump are expected to be alternatively occupied by sodium and potassium.
View Article and Find Full Text PDFNeuromolecular Med
October 2005
Familial hemiplegic migraine type 2, an autosomal dominant form of migraine with aura, has been associated with four distinct mutations in the alpha2-subunit of the Na+,K+-ATPase. We have introduced these mutations in the alpha2-subunit of the human Na+,K+-ATPase and the corresponding mutations in the Bufo marinus alpha1-subunit and studied these mutants by expression in Xenopus oocyte. Metabolic labeling studies showed that the mutants were synthesized and associated with the beta-subunit, except for the alpha2HW887R mutant, which was poorly synthesized, and the alpha1BW890R, which was partially retained in the endoplasmic reticulum.
View Article and Find Full Text PDFNa+,K+-ATPase is responsible for maintaining the cross-membrane Na+ and K+ gradients of animal cells. This P-type ATPase works via a complex transport cycle, during which it binds and occludes three intracellular Na+ ions and then two extracellular K+ ions, which it then releases on the other side of the membrane. The cation pathway through the protein, and the structures responsible for occluding cations inside the protein, have not yet been definitely identified.
View Article and Find Full Text PDF