ACS Appl Mater Interfaces
October 2024
Nanomaterials (Basel)
August 2024
This study investigated biodiesel production via the transesterification of grapeseed oil with plasma-modified biomass-based catalysts originating from starfish. Dried starfish was first converted into magnesium and calcium oxide through heat treatment and then further modified by plasma engineering to improve the catalyst's surface area and active sites via zinc addition. The Zn content was added via plasma engineering in the ratios of starfish (MgCaCO): ZnO varying from 5:1, 10:1, to 20:1.
View Article and Find Full Text PDFThe key to design an advanced oxygen reduction reaction (ORR) electrocatalyst is a well-balance between the adsorption and desorption of oxygen intermediates. This study systematically evaluated the ORR activity of HCP and FCC cobalt core-shell cobalt/N-doped carbon (Cobalt@NC) catalyst via theoretical and experimental studies. The electronic structure calculations using density functional theory (DFT) calculations revealed that the ORR activity of carbon layer can be improved by 1) switching the electrostatic potential in the electrical double layer due to the polarization induced at the carbon-cobalt interface and 2) modulating the electron population in the bonding orbital in the C-O bonds in an ORR.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Noble metals (Pt) and metal oxides (IrC and RuO) are heavily utilized as benchmark electrocatalysts for alkaline water splitting; however, these materials possess several drawbacks including high cost, poor selectivity and stability, and high environmental impact. To address these issues, we synthesized a novel metal-free conducting polypyrrole-polythiophene (Ppy-Ptp) copolymer and a separate Ppy electrode material for water-splitting applications. The Ppy-Ptp and Ppy electrocatalysts exhibited remarkable activity in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively.
View Article and Find Full Text PDFNano Converg
August 2023
In recent years, low-temperature plasma-assisted processes, featuring high reaction efficiency and wide application scope, have emerged as a promising alternative to conventional methods for biomass valorization. It is well established that charged species, chemically energetic molecules and radicals, and highly active photons playing key roles during processing. This review presents the major applications of low-temperature plasma for biomass conversion in terms of (i) pretreatment of biomass, (ii) chemo fractionation of biomass into value-added chemicals, and (iii) synthesis of heterogeneous catalyst for further chemo-catalytic conversion.
View Article and Find Full Text PDFSolid-state batteries (SSBs) have emerged as a promising alternative to conventional liquid electrolyte batteries due to their potential for higher energy density and improved safety. However, achieving high performance in SSBs is difficult because of inadequate contact and interfacial reactions that generate high interfacial resistance, as well as inadequate solid-solid contact between electrodes. These chronic issues are associated with inhomogeneous ion and electron transport networks owing to imperfect solid-solid interfacial contact.
View Article and Find Full Text PDFAs bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen-carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g.
View Article and Find Full Text PDFTungsten-doped Ni-Fe hydroxides fabricated on a three-dimensional nickel foam through cathodic electrodeposition are proposed as effective oxygen evolution reaction (OER) catalysts for alkaline water oxidation. Incorporating an adequate amount of W into Ni-Fe hydroxides modulates the electronic structure by changing the local environment of Ni and Fe and create oxygen vacancies, resulting in abundant active sites for the OER. The optimized electrocatalyst, with a substantial number of catalytic sites, is found to outperform the well-established 20 wt% Ir/C electrocatalyst.
View Article and Find Full Text PDFLow-cost, high-activity, non-precious metal electrocatalysts are needed to enhance the bifunctional oxygen activities of rechargeable Zn-Air batteries. In this study, a Fe-enriched FeNi inter-metallic nanoparticle/nitrogen-doped carbon (Fe-enriched-FeNi/NC) electrocatalyst was designed and prepared using a facile method based on plasma engineering. The excess Fe-ions in the Fe-enriched FeNi nanoparticles led to a high degree of lattice distortion that produced abundant oxygen-active sites.
View Article and Find Full Text PDFMetal-air batteries and fuel cells have attracted much attention as powerful candidates for a renewable energy conversion system for the last few decades. However, the high cost and low durability of platinum-based catalysts used to enhance sluggish oxygen reduction reaction (ORR) at air electrodes prevents its wide application to industry. In this work, we applied a plasma process to synthesize cobalt nanoparticles catalysts on nitrogen-doped carbon support with controllable quaternary-N and amino-N structure.
View Article and Find Full Text PDFDeveloping cost-effective and efficient oxygen evolution reaction (OER) electrocatalyst is highly essential for energy-conversion technologies. A self-assembled NiFe-layered double hydroxide (LDH)@MnCO heterostructure prepared on Ni foam using a successive hydrothermal strategy shows notable catalytic activity toward the OER with a small overpotential of 275 mV to drive a geometrical current density of 10 mA cm under alkaline conditions with remarkable stability for 15 h, outperforming IrO/C electrocatalyst (350 mV@10 mA cm). The hierarchical NiFe-LDH@MnCO heterostructure possess more exposed active sites, enhanced conductivity and superior interfacial coupling effect makes them an ideal candidate for OER electrocatalyst.
View Article and Find Full Text PDFThe metal-air battery is a form of renewable energy generation technology that produces energy electrochemically and can address energy concerns in the near future. However, state-of-the-art Pt electrocatalysts often suffer from agglomeration or detachment from carbon supports under prolonged operation, eventually limiting the long-term utilization of metal-air batteries. In this work, Pt nanoparticles were deposited on sulfur-doped nanocarbon to increase its stability.
View Article and Find Full Text PDFMetal-air batteries are attracting increasing attention as a superior renewable energy conversion device due to their high performance and strong potential. However, the high cost and low stability of the current Pt catalyst is the main obstacle preventing wide industrial application. In this work, we applied a plasma process to fabricate aniline and a transition metals electrode (Fe, Co, Ni) as the carbon-nitrogen and the metal nanoparticle (NP) precursors, respectively, for selective metal/amino-N-doped carbon catalysts.
View Article and Find Full Text PDFHalogen-doped carbon nanoparticles (CNPs) were synthesized by a simple one-step solution plasma process at room temperature using a mixture of benzene (C6H6) and organics containing halogen atoms as the precursors (i.e., hexafluorobenzene (C6F6), hexachlorobenzene (C6Cl6), and hexabromobenzene (C6Br6)).
View Article and Find Full Text PDFHeterocarbon nanosheets incorporating iron phthalocyanine (FP-NCNs-SP) have been successfully synthesized by a facile one-pot solution plasma process at high repetition frequency. It was found that the Fe-N4 catalytic active sites could be preserved on the FP-NCNs-SP without degradation. The FP-NCNs-SP also possessed large surface area, good conductivity and high degree of graphitization.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2015
The extraction of DNA is the most crucial method used in molecular biology. Up to date silica matrices has been widely applied as solid support for selective DNA adsorption and extraction. However, since adsorption force of SiOH functional groups is much greater than that of desorption force, the DNA extraction efficiency of silica surfaces is limited.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2015
Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors.
View Article and Find Full Text PDFIn the present work, we demonstrated the significance of a central transition metal, Fe, in a N4-macrocycle for the enhancement of ORR activity and other electrochemical properties. The catalysts were synthesized by a solution plasma process. Fe-phthalocyanine/benzene and phthalocyanine/benzene were chosen as the precursors of Fe-phthalocyanine based mesoporous carbon (FP-MCS) and phthalocyanine based mesoporous carbon (P-MCS) catalysts, respectively.
View Article and Find Full Text PDFHigh-electrocatalytic-activity noble nanoparticles (NPs) supported on carbon nanoballs (CNBs) were synthesized using an innovative plasma-in-liquid method, which is known as solution plasma processing (SPP). This technique uses a one-step method for the synthesis of NPs on carbon materials. CNBs are formed using benzene as a carbon precursor while gold (Au) or platinum (Pt) nanoparticles are generated instantaneously via sputtering from metal electrodes.
View Article and Find Full Text PDF