The cluster of differentiation 38 (CD38) is a well-validated target for treating multiple myeloma. Although anti-CD38 mAbs have demonstrated outstanding initial responses in patients with multiple myeloma, nearly all patients eventually develop resistance and relapse. In addition, currently approved CD38 targeting therapies have failed to show monotherapy efficacy in lymphomas, where CD38 expression is present but at lower levels.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) is a clinically validated target and often overexpressed in some solid tumors. Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies have been approved for treatment of NSCLC, head and neck cancers and colorectal cancers. However, clinical response is limited and often accompanied by significant toxicities due to normal tissue expression.
View Article and Find Full Text PDFTrop-2, also known as TACSTD2, EGP-1, GA733-1, and M1S1, is frequently expressed on a variety of human carcinomas, and its expression is often associated with poor prognosis of the diseases. However, it is also present on the epithelium of several normal tissues. A comprehensively designed Trop-2-targeting antibody-drug conjugate (ADC), balancing both efficacy and toxicity, is therefore necessary to achieve clinical utility.
View Article and Find Full Text PDFBispecific antibodies and antibody fragments are a new class of therapeutics increasingly utilized in the clinic for T cell recruitment (catumaxomab anti-EpCAM/CD3 and blinatumomab anti-CD19/CD3), increase in the selectivity of targeting, or simultaneous modulation of multiple cellular pathways. While the clinical potential for certain bispecific antibody formats is clear, progress has been hindered because they are often difficult to manufacture, may suffer from suboptimal pharmacokinetic properties, and may be limited due to potential immunogenicity issues. Current state-of-the-art human IgG-like bispecific technologies require co-expression of two heavy chains with a single light chain, use crossover domains to segregate light chains, or utilize scFv (single-chain fragment variable)-Fc fusion.
View Article and Find Full Text PDFVosaroxin (formerly voreloxin) is a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, inducing site-selective double-strand breaks (DSB), G2 arrest and apoptosis. Objective responses and complete remissions were observed in phase 2 studies of vosaroxin in patients with solid and hematologic malignancies, and responses were seen in patients whose cancers were resistant to anthracyclines. The quinolone-based scaffold differentiates vosaroxin from the anthracyclines and anthracenediones, broadly used DNA intercalating topoisomerase II poisons.
View Article and Find Full Text PDFAt many promoters, transcription is regulated by simultaneous binding of a protein to multiple sites on DNA, but the structures and dynamics of such transcription factor-mediated DNA loops are poorly understood. We directly examined in vitro loop formation mediated by Escherichia coli lactose repressor using single-molecule structural and kinetics methods. Small ( approximately 150 bp) loops form quickly and stably, even with out-of-phase operator spacings.
View Article and Find Full Text PDFAccurate chromosome segregation is controlled by the spindle checkpoint, which senses kinetochore- microtubule attachments and tension across sister kinetochores. An important step in the tension-signaling pathway involves the phosphorylation of an unknown protein by polo-like kinase 1/Xenopus laevis polo-like kinase 1 (Plx1) on kinetochores lacking tension to generate the 3F3/2 phosphoepitope. We report here that the checkpoint protein BubR1 interacts with Plx1 and that phosphorylation of BubR1 by Plx1 generates the 3F3/2 epitope.
View Article and Find Full Text PDFAccurate chromosome segregation is controlled by the spindle checkpoint, which responds to the lack of microtubule-kinetochore attachment or of tension across sister kinetochores through phosphorylation of kinetochore proteins by the Mps1, Bub1, BubR1, Aurora B, and Plk1/Plx1 kinases. The presence of the 3F3/2 phosphoepitope on kinetochores, generated by Plk1/Plx1-mediated phosphorylation of an unknown protein, correlates with the activation of the tension-sensitive checkpoint pathway. Using immunodepletion approach and a rephosphorylation assay in Xenopus extracts, we report here that not only the formation of the 3F3/2 phosphoepitope is dependent on the checkpoint activation but also the loading of the 3F3/2 substrate to kinetochores requires the prior assembly of Mps1, Bub1 and BubR1 onto kinetochores.
View Article and Find Full Text PDFDynamic attachment of microtubules to kinetochores during mitosis generates pulling force, or tension, required for the high fidelity of chromosome separation. A lack of tension activates the spindle checkpoint and delays the anaphase onset. A key step in the tension-response pathway involves the phosphorylation of the 3F3/2 epitope by an unknown kinase on untensed kinetochores.
View Article and Find Full Text PDFThe abnormal expression of breast cancer-specific gene 1 (BCSG1) in malignant mammary epithelial cells is highly associated with the development and progression of breast cancer. A series of in vitro and in vivo studies performed in our laboratory and others have demonstrated that BCSG1 expression significantly stimulates proliferation, invasion, and metastasis of breast cancer cells. However, currently little is known about how BCSG1 exerts its oncogenic functions.
View Article and Find Full Text PDF