The coronavirus disease (COVID-19) pandemic has shown the importance of early disease diagnosis in preventing further infection and mortality. Despite major advances in the development of highly precise and rapid detection approaches, the time-consuming process of designing a virus-specific diagnostic kit has been a limiting factor in the early management of the pandemic. Here, we propose an RNA polymerase activity-sensing strategy utilizing an RNA polymerization actuating nucleic acid membrane (RANAM) partially metallized with gold for colorimetric RNA virus detection.
View Article and Find Full Text PDFA coronavirus disease (COVID-19) outbreak associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading widely through person-to-person transmission. Various detection approaches have been developed involving quantitative polymerase chain reaction (qPCR) methods, CRISPR-based systems, and direct targeting of specific coronavirus proteins. However, there have only been a few reports on the detection of RNA-dependent RNA polymerase (RdRP), the primer-independent RNA-replicable protein produced by the RNA genes of coronavirus.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Advances in the DNA nanotechnology have enabled the fabrication of DNA-based hydrogels with precisely controlled structures and tunable mechanical and biological properties. Compared to DNA hydrogel, preparation of RNA-based hydrogel remains challenging due to the inherent instability of naked RNA. To overcome these limitations, we fabricated a DNA-RNA hybrid hydrogel via stepwise dual enzymatic polymerization.
View Article and Find Full Text PDF