Calmodulin (CaM) is a highly conserved mediator of calcium (Ca )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events.
View Article and Find Full Text PDFLong QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function.
View Article and Find Full Text PDFCatecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear.
View Article and Find Full Text PDFThe concept of substrate inhibition to prevent its phosphorylation has potential in drug discovery and is envisioned to treat the autoimmune disorder multiple sclerosis (MS). Glia maturation factor-β (GMF-β) Ser83 phosphorylation by protein kinase A (PKA) is pivotal in the activation of GMF-β-p38MAPK-NFκB biochemical pathway towards proinflammatory response induction in experimental autoimmune encephalomyelitis (EAE). Using structure-based drug design, we identified the small molecule inhibitor 1-H-indazole-4yl methanol (GMFBI.
View Article and Find Full Text PDFLeishmaniasis is a neglected disease that is caused by different species of the protozoan parasite , and it currently affects 12 million people worldwide. The antileishmanial therapeutic arsenal remains very limited in number and efficacy, and there is no vaccine for this parasitic disease. One pathway that has been genetically validated as an antileishmanial drug target is the biosynthesis of uridine diphosphate-glucose (UDP-Glc), and its direct derivative UDP-galactose (UDP-Gal).
View Article and Find Full Text PDFA dysfunctional prothrombin gene characterized by novel point mutation at Arg553 to Gln residue in Deep vein thrombosis (DVT) patient which we designated as "Prothrombin Amrita" was previously reported from our lab. The mutation occurred at nucleotide 20030 in exon 14 and was confirmed by restriction enzyme digestion. Arg553 has been reported as one of the key residues for the binding of cofactor Na ion in the thrombin protein.
View Article and Find Full Text PDFThe role of butyrylcholinesterase (BChE) in the progression of Alzheimer's disease (AD) has recently become more crucial. In the AD brain, selective BChE inhibitors have been demonstrated to have a beneficial effect in vivo, probably by recovering cholinergic activity and/or by restoring AChE:BChE activity ratios to the levels observed in the healthy brain. Thienothiazines are compounds sharing some structural features with phenothiazines, which are known to be potent BChE inhibitors.
View Article and Find Full Text PDF