Front Sports Act Living
October 2024
We propose that a principled understanding of meta-learning, as aimed for by the authors, benefits from linking the focus on learning with an equally strong focus on structure, which means to address the question: What are the meta-structures that can guide meta-learning?
View Article and Find Full Text PDFForaging confronts animals, including humans, with the need to balance exploration and exploitation: exploiting a resource until it depletes and then deciding when to move to a new location for more resources. Research across various species has identified rules for when to leave a depleting patch, influenced by environmental factors like patch quality. Here we compare human and gerbil patch-leaving behavior through two analogous tasks: a visual search for humans and a physical foraging task for gerbils, both involving patches with randomly varying initial rewards that decreased exponentially.
View Article and Find Full Text PDFIntroduction: The emergent coherent population activity from thousands of stochastic neurons in the brain is believed to constitute a key neuronal mechanism for salient processing of external stimuli and its link to internal states like attention and perception. In the sensory cortex, functional cell assemblies are formed by recurrent excitation and inhibitory influences. The stochastic dynamics of each cell involved is largely orchestrated by presynaptic CAV2.
View Article and Find Full Text PDFScholars have explored the role of self-tracking in mediating people's values, perceptions, and practices. But little is known about its institutionalised forms, although it is becoming a routine component of health policies and insurance programs. Furthermore, the role of structural elements such as sociodemographic variables, socialisations, and trajectories has been neglected.
View Article and Find Full Text PDFThe processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed.
View Article and Find Full Text PDFScience is changing: the volume and complexity of data are increasing, the number of studies is growing and the goal of achieving reproducible results requires new solutions for scientific data management. In the field of neuroscience, the German National Research Data Infrastructure (NFDI-Neuro) initiative aims to develop sustainable solutions for research data management (RDM). To obtain an understanding of the present RDM situation in the neuroscience community, NFDI-Neuro conducted a comprehensive survey among the neuroscience community.
View Article and Find Full Text PDFFront Neural Circuits
January 2022
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature.
View Article and Find Full Text PDFFunctional hemispheric lateralization is a basic principle of brain organization. In the auditory domain, the right auditory cortex (AC) determines the pitch direction of continuous auditory stimuli whereas the left AC discriminates gaps in these stimuli. The involved functional interactions between the two sides, mediated by commissural connections, are poorly understood.
View Article and Find Full Text PDFDecentralization is a central characteristic of biological motor control that allows for fast responses relying on local sensory information. In contrast, the current trend of Deep Reinforcement Learning (DRL) based approaches to motor control follows a centralized paradigm using a single, holistic controller that has to untangle the whole input information space. This motivates to ask whether decentralization as seen in biological control architectures might also be beneficial for embodied sensori-motor control systems when using DRL.
View Article and Find Full Text PDFCorticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns.
View Article and Find Full Text PDFThis work studies the evolution of cortical networks during the transition from escape strategy to avoidance strategy in auditory discrimination learning in Mongolian gerbils trained by the well-established two-way active avoidance learning paradigm. The animals were implanted with electrode arrays centered on the surface of the primary auditory cortex and electrocorticogram (ECoG) recordings were made during performance of an auditory Go/NoGo discrimination task. Our experiments confirm previous results on a sudden behavioral change from the initial naïve state to an avoidance strategy as learning progresses.
View Article and Find Full Text PDF. In tetrode recordings, the cell types of the recorded units are difficult to determine based on electrophysiological characteristics alone. Optotagging, the use of optogenetic stimulation to precisely identify cells, is a method to overcome this challenge.
View Article and Find Full Text PDFHarmful environmental sounds are a prevailing source of chronic hearing impairments, including noise induced hearing loss, hyperacusis, or tinnitus. How these symptoms are related to pathophysiological damage to the sensory receptor epithelia and its effects along the auditory pathway, have been documented in numerous studies. An open question concerns the temporal evolution of maladaptive changes after damage and their manifestation in the balance of thalamocortical and corticocortical input to the auditory cortex (ACx).
View Article and Find Full Text PDFAthletes, sponsors and sport organisations all have a vested interest in upholding the values of clean sport. Despite the considerable and concerted efforts of the global anti-doping system over two decades, the present system is imperfect. Capitalising upon consequent frustrations of athletes, event organisers and sponsors, alternative anti-doping systems have emerged outside the global regulatory framework.
View Article and Find Full Text PDFObjective: A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO).
View Article and Find Full Text PDFThe primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task.
View Article and Find Full Text PDFBrain function requires the flexible coordination of billions of neurons across multiple scales. This could be achieved by scale-free, critical dynamics balanced at the edge of order and disorder. Criticality has been demonstrated in several, often reduced neurophysiological model systems.
View Article and Find Full Text PDFThe current study aimed to resolve some of the inconsistencies in the literature on which mental processes affect auditory cortical activity. To this end, we studied auditory cortical firing in four monkeys with different experience while they were involved in six conditions with different arrangements of the task components sound, motor action, and water reward. Firing rates changed most strongly when a sound-only condition was compared to a condition in which sound was paired with water.
View Article and Find Full Text PDFKey Points: Ketamine is a common anaesthetic agent used in research and more recently as medication in treatment of depression. It has known effects on inhibition of interneurons and cortical stimulus-locked responses, but the underlying functional network mechanisms are still elusive. Analysing population activity across all layers within the auditory cortex, we found that doses of this anaesthetic induce a stronger activation and stimulus-locked response to pure-tone stimuli.
View Article and Find Full Text PDFReward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration.
View Article and Find Full Text PDFBackground: Optogenetic stimulation has grown into a popular brain stimulation method in basic neuroscience while electrical stimulation predominates in clinical applications. In order to explain the effects of electrical stimulation on a cellular level and evaluate potential advantages of optogenetic therapies, comparisons between the two stimulation modalities are necessary. This comparison is hindered, however, by the difficulty of effectively matching the two fundamentally different modalities.
View Article and Find Full Text PDFMultisensory integration in primary auditory (A1), visual (V1), and somatosensory cortex (S1) is substantially mediated by their direct interconnections and by thalamic inputs across the sensory modalities. We have previously shown in rodents (Mongolian gerbils) that during postnatal development, the anatomical and functional strengths of these crossmodal and also of sensory matched connections are determined by early auditory, somatosensory, and visual experience. Because supragranular layer III pyramidal neurons are major targets of corticocortical and thalamocortical connections, we investigated in this follow-up study how the loss of early sensory experience changes their dendritic morphology.
View Article and Find Full Text PDFThe auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and "giant" corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract-tracing with biocytin and electron microscopy.
View Article and Find Full Text PDF