Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia.
View Article and Find Full Text PDFIntroduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of cancer treatment that significantly impacts patients' quality of life. This study investigated the effects of targeting metabolic pathways on bortezomib-induced neuropathic pain and tumor growth using a Lewis lung carcinoma (LLC) mouse model, while exploring potential sex differences.
Methods: Male and female C57BL/6J mice were implanted with LLC cells and treated with bortezomib alone or in combination with metformin, dichloroacetate (DCA), or oxamate.
This study investigates the impact of combining psychophysical stress, induced by forced swim (FSS), with masseter inflammation on reactive oxygen species (ROS) production in trigeminal ganglia (TG), TRPA1 upregulation in TG, and mechanical hyperalgesia. In a rat model, we demonstrate that FSS potentiates and prolongs CFA-induced ROS upregulation within TG. The ROS levels in CFA combined with FSS group surpass those in the CFA-only group on days 4 and 28 post-treatment.
View Article and Find Full Text PDFMetabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration.
View Article and Find Full Text PDFChemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bortezomib, has been shown to induce aerobic glycolysis in sensory neurons.
View Article and Find Full Text PDFChemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN is the major cause of dose reduction or discontinuation of otherwise life-saving treatment. Unfortunately, CIPN can persist in cancer survivors, which adversely affects their quality of life.
View Article and Find Full Text PDFInjury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined.
View Article and Find Full Text PDFActivation of opioid and cannabinoid receptors expressed in nociceptors induces effective antihyperalgesia. In this study, we examined whether combinations of opioid and cannabinoid receptor agonists directed at the injured site would enhance therapeutic effectiveness. Behavioral pharmacology experiments were performed to compare the effects of DAMGO, a selective agonist for μ-opioid receptor (MOR), ACPA, a specific agonist for CB1, and combinations of DAMGO and ACPA in attenuating complete Freund's adjuvant (CFA)-induced mechanical hyperalgesia in the rat hindpaw.
View Article and Find Full Text PDFTargeting proteins within the N-type voltage-gated calcium channel (CaV2.2) complex has proven to be an effective strategy for developing novel pain therapeutics. We describe a novel peptide aptamer derived from the collapsin response mediator protein 2 (CRMP2), a CaV2.
View Article and Find Full Text PDFPain is a crucial physiological response to injury and pathologies. The development and maintenance of pain requires the expression of novel genes. The expression of such genes occurs in highly regulated and orchestrated manner where protein translation provides an exquisite temporal and spatial fidelity within the axons and dendrites of neurons.
View Article and Find Full Text PDFActivity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2), an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state.
View Article and Find Full Text PDFTranscriptional regulation of genes by cyclic AMP response element binding protein (CREB) is essential for the maintenance of long-term memory. Moreover, retrograde axonal trafficking of CREB in response to nerve growth factor (NGF) is critical for the survival of developing primary sensory neurons. We have previously demonstrated that hindpaw injection of interleukin-6 (IL-6) induces mechanical hypersensitivity and hyperalgesic priming that is prevented by the local injection of protein synthesis inhibitors.
View Article and Find Full Text PDFNociceptive signaling from the meninges is proposed to contribute to many forms of headache. However, the events within the meninges that drive afferent activity are not clear. Meningeal fibroblasts are traditionally thought to produce extracellular proteins that constitute the meninges but not to contribute to headache.
View Article and Find Full Text PDFProcessing (P) bodies are RNA granules that comprise key cellular sites for the metabolism of mRNAs. In certain cells, including neurons, these RNA granules may also play an important role in storage of mRNAs in a translationally dormant state. Utilizing nerve growth factor (NGF) and interleukin 6 (IL6), which stimulate cap-dependent translation in sensory neurons, and adenosine monophosphate activated protein kinase (AMPK) activators, which inhibit cap-dependent translation, we have tested the hypothesis that cap-dependent translation is linked to P body formation in mammalian sensory neurons.
View Article and Find Full Text PDFProtein Z (PZ) is a vitamin K-dependent factor characterized by its homology to other vitamin K-dependent factors (factors VII, IX, and X, protein C and protein S), but lacks any enzymatic activity. Instead, PZ acts as a cofactor for the inhibition of factor Xa through the serpin PZ-dependent protease inhibitor (ZPI). PZ deficiency is associated with a procoagulant state, highlighted by excessive FXa secretion and thrombin production, and is linked with several thrombotic disorders, including arterial vascular and venous thromboembolic diseases.
View Article and Find Full Text PDFMammalian target of rapamycin complex 1 (mTORC1) inhibitors are extensively used as immunosuppressants to prevent transplant rejection and in treatment of certain cancers. In patients, chronic treatment with rapamycin or its analogues (rapalogues) has been reported to lead to sensory hypersensitivity and pain conditions via an unknown mechanism. Here, we show that pharmacological or genetic inhibition of mTORC1 activates the extracellular signal-regulated kinase (ERK) pathway in sensory neurons via suppression of S6K1 to insulin receptor substrate 1 negative feedback loop.
View Article and Find Full Text PDFBackground: Peripheral nerve injury (PNI) results in a fundamental reorganization of the translational machinery in the injured peripheral nerve such that protein synthesis is increased in a manner linked to enhanced mTOR and ERK activity. We have shown that metformin treatment, which activates adenosine monophosphate-activated protein kinase (AMPK), reverses tactile allodynia and enhanced translation following PNI. To gain a better understanding of how PNI changes the proteome of the sciatic nerve and ascertain how metformin treatment may cause further change, we conducted a range of unbiased proteomic studies followed by biochemical experiments to confirm key results.
View Article and Find Full Text PDFBackground: Chronic pain is an important medical problem affecting hundreds of millions of people worldwide. Mechanisms underlying the maintenance of chronic pain states are poorly understood but the elucidation of such mechanisms have the potential to reveal novel therapeutics capable of reversing a chronic pain state. We have recently shown that the maintenance of a chronic pain state is dependent on an atypical PKC, PKMζ, but the mechanisms involved in controlling PKMζ in chronic pain are completely unknown.
View Article and Find Full Text PDFInjuries can induce adaptations in pain processing that result in amplification of signaling. One mechanism may be analogous to long-term potentiation and involve the atypical protein kinase C, PKMζ. The possible contribution of PKMζ-dependent and independent amplification mechanisms to experimental neuropathic pain was explored in rats with spinal nerve ligation (SNL) injury.
View Article and Find Full Text PDFBackground: Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache.
Methods: Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126.
Background: Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery.
View Article and Find Full Text PDFResults Probl Cell Differ
February 2012
The purpose of this chapter is to discuss the role of the fragile X mental retardation protein (FMRP) in the spinal sensory system and the potential for use of the mouse model of fragile X syndrome to better understand some aspects of the human syndrome as well as advance knowledge in other areas of investigation, such as pain amplification, an important aspect of clinical pain disorders. We describe how the Fmr1 knockout mouse can be used to better understand the role of Fmrp in axons using cultures of sensory neurons and using manipulations to these neurons in vivo. We also discuss the established evidence for a role of Fmrp in nociceptive sensitization and how this evidence relates to an emerging role of translation control as a key process in pain amplification.
View Article and Find Full Text PDFNeuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis.
View Article and Find Full Text PDFSensitization of the pain pathway is believed to promote clinical pain disorders. We hypothesized that the persistence of a sensitized state in the spinal dorsal horn might depend on the activity of protein kinase M ζ (PKMζ), an essential mechanism of late long-term potentiation (LTP). To test this hypothesis, we used intraplantar injections of interleukin-6 (IL-6) in mice to elicit a transient allodynic state that endured ∼3 d.
View Article and Find Full Text PDF