Publications by authors named "Ohan S Manoukian"

Peripheral nerve injuries account for roughly 3% of all trauma patients with over 900,000 repair procedures annually in the US. Of all extremity peripheral nerve injuries, 51% require nerve repair with a transected gap. The current gold-standard treatment for peripheral nerve injuries, autograft repair, has several shortcomings.

View Article and Find Full Text PDF

Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress.

View Article and Find Full Text PDF

This Article reports the fabrication and characterization of composite micro-nanostructured spiral scaffolds functionalized with nanofibers and hydroxyapatite (HA) for bone regeneration. The spiral poly(lactic acid--glycolic acid) (PLGA) porous microstructure was coated with sparsely spaced PLGA nanofibers and HA to enhance surface area and bioactivity. Polyelectrolyte-based HA coating in a layer-by-layer (LBL) fashion allowed 10-70 M Ca/mm incorporation.

View Article and Find Full Text PDF

Peripheral nerve injury accounts for roughly 2.8% of all trauma patients with an annual cost of 7 billion USD in the U.S.

View Article and Find Full Text PDF

Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro-nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES.

View Article and Find Full Text PDF

3D printing, or rapid prototyping, is a fabrication technique that is used for various engineering applications with advantages such as mass production and fine tuning of spatial-dimensional properties. Recently, this fabrication method has been adopted for tissue engineering applications due to its ability to finely tune porosity and create precise, uniform, and repeatable structures. This review aims to introduce 3D printing applications in soft tissue engineering and regenerative medicine including state-of-the-art scaffolds and key future challenges.

View Article and Find Full Text PDF

For many years, the avascular nature of cartilage tissue has posed a clinical challenge for replacement, repair, and reconstruction of damaged cartilage within the human body. Injuries to cartilage and osteochondral tissues can be due to osteoarthritis, sports, aggressive cancers, and repetitive stresses and inflammation on wearing tissue. Due to its limited capacity for regeneration or repair, there is a need for suitable material systems which can recapitulate the function of the native osteochondral tissue physically, mechanically, histologically, and biologically.

View Article and Find Full Text PDF

Development of injectable, long-lasting, contraceptive drug delivery formulations and implants are highly desired to avoid unplanned pregnancies while improving patient compliance and reducing adverse side effects and treatment costs. The present study reports on the fabrication and characterization of two levonorgestrel (LNG) microsphere injectable formulations. Poly(ε-caprolactone) (PCL) with 12.

View Article and Find Full Text PDF

Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission.

View Article and Find Full Text PDF

Purpose: To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment.

Methods: Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion.

View Article and Find Full Text PDF

Therapeutic biomolecules often require frequent administration and supramolecular dosing to achieve therapeutic efficiencies and direct infusion into treatment or defect sites results in inadequate physiological response and at times severe side effects or mis-targeting. Delivery systems serve several purposes such as increased circulatory time, increased biomolecule half-life, and incorporation of new innovations can enable highly specific cell targeting and improved cell and nucleus permeability. Poly(lactic acid) (PLA) has become a "material of choice" due to wide availability, reproducible synthetic route, customization, versatility, biodegradability and biocompatibility.

View Article and Find Full Text PDF

Background: Shoulder pain is a common problem, with 30% to 50% of the American population affected annually. While the majority of these shoulder problems improve, there is a high rate of recurrence, as 54% of patients experience persistent symptoms 3 years after onset.

Purpose: Posterior shoulder tightness has been shown to alter glenohumeral (GH) kinematics.

View Article and Find Full Text PDF

Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination.

View Article and Find Full Text PDF

Purpose: A device for all-inside suture-based meniscal repairs has been introduced (NovoStitch; Ceterix, Menlo Park, CA) that passes the suture vertically through the meniscus, thereby encircling the tear, and does not require an additional incision or extra-capsular anchors. Our aim was to compare this all-inside suture-based repair with an inside-out suture repair and an all-inside anchor-based repair (FasT-Fix 360°; Smith & Nephew, Andover, MA).

Methods: Longitudinal tears were created in 36 fresh-frozen porcine menisci.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to compare gap formation, strength, and stiffness of repaired radial tears of the meniscus treated using a new all-inside technique versus a traditional inside-out suture technique.

Methods: Radial tears were created in 36 fresh-frozen porcine menisci. Repairs were performed using a novel all-inside suture-based meniscal repair device or an inside-out technique.

View Article and Find Full Text PDF