Environ Sci Pollut Res Int
January 2024
The reduction of various nitrogen oxide (NOx) emissions from diesel engines is an important environmental issue due to their negative impact on air quality and public health. Selective catalytic reduction (SCR) has emerged as an effective technology to mitigate NOx emissions, but predicting the performance of SCR systems remains a challenge due to the complex chemistry involved. In this study, we propose using DNN models to predict NOx emission reductions in SCR systems.
View Article and Find Full Text PDFIn accordance with the recently reinforced exhaust regulations and onboard diagnostics regulations, it is essential to adopt diesel particulate filter systems in diesel vehicles; a sensor that directly measures particulate matter (PM) in exhaust gas is installed to precisely monitor diesel particulate filter (DPF) failure. Because the reduction of particulate matter in the diesel particulate filter system is greatly influenced by the physical wall structure of the substrate, the presence or absence of damage to the substrate wall (cracks or local melting, etc.) determines the reliability of normal DPF operation.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the early tissue response around three one-piece implant systems with different transmucosal designs.
Materials And Methods: Three one-piece dental implant systems with different profiles and surface roughnesses on the transmucosal portion were examined in the current study. The transmucosal portions were flared and machined (FM), concave and machined with microgrooves (CMG), or straight and anodic oxidized (SA).
Background: The Arabidopsis thaliana genome sequence provides a catalog of reference genes applicable to comparative microsynteny analysis of other species, facilitating map-based cloning in economically important crops. We have applied such an analysis to the tomato expressed sequence tag (EST) database to expedite high-resolution mapping of the Diageotropica (Dgt) gene within the distal end of chromosome 1 in tomato (Lycopersicon esculentum).
Results: A BLAST search of the Arabidopsis database with nucleotide sequences of markers that flank the tomato dgt locus revealed regions of microsynteny between the distal end of chromosome 1 in tomato, two regions of Arabidopsis chromosome 4, and one on chromosome 2.