Publications by authors named "Oh Kee Kwon"

We proposed a thermally-tuned distributed Bragg reflector (DBR) laser diode that has a high tuning efficiency over a wide wavelength tuning range. The laser diode is composed of a gain, a phase control (PC), and a DBR region, and its wavelength is tuned coarsely and finely by the micro-heaters on the DBR and PC regions, respectively. To improve the tuning efficiency, we developed a technique for fabricating a thermal isolation structure through a reverse mesa etching process, replacing the complex process that uses an InGaAs sacrificial layer.

View Article and Find Full Text PDF

We report a tunable distributed Bragg reflector-laser diode (DBR-LD) integrated with an electro-absorption-modulator (EAM) at an operating wavelength of 1.3 µm. This LD consists of gain, phase control (PC), DBR, and EAM sections, realized by using a butt-coupling technique in monolithically integrating the multiple quantum wells (MQWs) with the passive core and by applying an etched-mesa buried hetero-structure (EMBH) to the resonance cavity (i.

View Article and Find Full Text PDF

We report a 1.3-µm and 10-Gbps tunable distributed Bragg reflector laser diode (DBR-LD) for the low-cost application of a wavelength division multiplex based mobile front-haul network. The device consists of gain, phase control, and DBR sections, implemented using a butt-coupling method through a monolithic integration and through the introduction of an etched mesa planar buried hetero-structure in a waveguide structure.

View Article and Find Full Text PDF

We report a novel structure that is capable of wide wavelength tuning in the distributed Bragg reflector laser diode (DBR-LD) with a single grating mirror. This device's DBR section has two tuning elements, plasma, and heater tunings, which are implemented simultaneously on the top of a single waveguide by using an in-between dielectric layer. For the proposed structure, a three-dimensional thermal simulation was conducted.

View Article and Find Full Text PDF

We present a 10-Gb/s L-band reflective electro-absorption modulator integrated with a semiconductor optical amplifier (REAM-SOA) having improved transmission performance at very low input power of seed light. To decrease the input power of seed light, the absorption characteristics of the REAM are adjusted to reduce the amplified spontaneous emission light returned into the SOA, suppressing the gain saturation effect of the SOA. At a considerably low input power of -16 dBm, the REAM-SOA exhibits a low transmission penalty of about 1.

View Article and Find Full Text PDF

We report on a novel combination of measurement techniques for evaluating dimensional and compositional changes of selective-area-grown multiple-quantum-well laser diodes (SAG MQW LDs). This technique is based on C-V and I-V measurements of the fully fabricated LDs. Using this technique, the changes in the capacitance and voltage correspond to the layer thickness and bandgap energy.

View Article and Find Full Text PDF

We present a ten-channel distributed feedback laser diode array (DFB-LDA) developed for the transmission of 100-Gb/s (10 × 10 Gb/s) signals separated by an 8 nm wavelength grid at a center wavelength of 1.55 μm. For the fabrication of this type of laser array, a selective area growth (SAG) technique, electron-beam lithography, and a reverse-mesa ridge waveguide LD processing technique were adopted to offer a tailored gain spectrum to each channel, providing both accurate lasing-wavelength control and excellent single-mode yield over all channels, and reducing the fabrication cost and electrical and thermal resistances.

View Article and Find Full Text PDF

We present a cost-effective 25-Gb/s electro-absorption modulator integrated laser (EML) transmitter optical sub-assembly (TOSA) using all-in-one flexible printed circuit board (FPCB) wiring and a metal optical bench (MOB). For a low cost and high bandwidth TOSA, internal and external wirings and feed-through of the TOSA to transmit radio-frequency (RF) signal are configured all-in-one using the FPCB. The FPCB is extended from an exterior of the TOSA package up to an EML chip inside the package through the slit formed on a rear sidewall of the package and die-bonded on the MOB.

View Article and Find Full Text PDF

We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e.

View Article and Find Full Text PDF

We investigate theoretically and experimentally the effect of the physical length of gain medium on dynamic mode stability in semiconductor lasers with an intra-cavity filter. In simulation, two types of analysis models were used to examine the lasing properties and to analyze the dynamic mode stability of the external-cavity system, respectively. In experiment, two different kinds of the structures were fabricated and their spectra were analyzed.

View Article and Find Full Text PDF

Asymmetric multiple-quantum-well laser diodes with wide and flat gain spectra were designed, fabricated, and analyzed. The active layer was composed of three 10-nm, one 8-nm, and two 6-nm 0.5% compressive strained wells and four 10-nm and one 5-nm 0.

View Article and Find Full Text PDF