Publications by authors named "Oguzhan Avcı"

Viruses can have devastating effects and cause epidemics in honey bee (Apis mellifera) colonies. Black queen cell virus (BQCV), which is one of the most common honey bee viruses, affects queen bee larvae and their pupae. This study provides information on the dynamics of BQCV infection in honey bees, using molecular diagnostics to investigate the effects of other pathogens and seasonal patterns that are considered relevant to the epidemiology of BQCV.

View Article and Find Full Text PDF

Label-free, visible light microscopy is an indispensable tool for studying biological nanoparticles (BNPs). However, conventional imaging techniques have two major challenges: (i) weak contrast due to low-refractive-index difference with the surrounding medium and exceptionally small size and (ii) limited spatial resolution. Advances in interferometric microscopy have overcome the weak contrast limitation and enabled direct detection of BNPs, yet lateral resolution remains as a challenge in studying BNP morphology.

View Article and Find Full Text PDF

Interference-enhanced wide-field nanoparticle imaging is a highly sensitive technique that has found numerous applications in labeled and label-free subdiffraction-limited pathogen detection. It also provides unique opportunities for nanoparticle classification upon detection. More specifically, the nanoparticle defocus images result in a particle-specific response that can be of great utility for nanoparticle classification, particularly based on type and size.

View Article and Find Full Text PDF

Single-molecule and single-nanoparticle biosensors are a growing frontier in diagnostics. Digital biosensors are those which enumerate all specifically immobilized biomolecules or biological nanoparticles, and thereby achieve limits of detection usually beyond the reach of ensemble measurements. Here we review modern optical techniques for single nanoparticle detection and describe the single-particle interferometric reflectance imaging sensor (SP-IRIS).

View Article and Find Full Text PDF

Fluorescence based microarray detection systems provide sensitive measurements; however, variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of fluorescence microarrays. The sensor employs a commercial flatbed scanner, and we demonstrate transformation of this low cost (∼100 USD) system into an Interferometric Reflectance Imaging Sensor through hardware and software modifications.

View Article and Find Full Text PDF

The sensitive detection and quantitative measurement of biological nanoparticles such as viruses or exosomes is of growing importance in biology and medicine since these structures are implicated in many biological processes and diseases. Interferometric reflectance imaging is a label-free optical biosensing method which can directly detect individual biological nanoparticles when they are immobilized onto a protein microarray. Previous efforts to infer bio-nanoparticle size and shape have relied on empirical calibration using a 'ruler' of particle samples of known size, which was inconsistent and qualitative.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of Peste des petits ruminants (PPR) vaccine on cytokine and antibody levels in sheep when administered alone or in combination with Corynebacterium cutis lysate (CCL). The PPR vaccine group received a single subcutaneous axillary injection of the PPR vaccine (1 mL containing tissue culture infectious dose (TCID) attenuated live PPRV, n = 6) and the combination treatment (1 mL CCL and 1 mL PPR vaccine, n = 6) groups received a single subcutaneous axillary injection of both CCL and PPR vaccine. Blood samples were collected from sheep before the treatment and at different points after treatment (1, 3, 7, 14, 21, and 28 days).

View Article and Find Full Text PDF

Lumpy skin disease is an economically important poxvirus disease of cattle. Vaccination is the main method of control but sporadic outbreaks have been reported in Turkey. This study was carried out to determine the changes in serum biochemical values of cattle naturally infected with lumpy skin disease virus (LSDV).

View Article and Find Full Text PDF

Interferometric imaging schemes have gained significant interest due to their superior sensitivity over imaging techniques that are solely based on scattered signal. In this study, we outline the theoretical foundations of imaging and characterization of single nanoparticles in an interferometric microscopy scheme, examine key parameters that influence the signal, and benchmark the model against experimental findings.

View Article and Find Full Text PDF

The aim of this study is to determine the effects of iPPOV on pro-inflammatory and anti-inflammatory cytokine levels in rats. iPPOV (1 ml/rat) was administered intraperitoneal route to 49 rats, except for 7 rats (Control, 0 group). Serum samples were collected from 7 rats at 1st, 2nd, 4th, 8th, 12th, 16th and 24th hr after treatments.

View Article and Find Full Text PDF

Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion.

View Article and Find Full Text PDF

Enzootic bovine leukosis (EBL) which is caused by bovine leukaemia virus (BLV) has an important economic impact on dairy herds due to reduced milk production and restrictions on livestock exports. This study was conducted to determine the BLV infection status in Central Anatolia Region of Turkey, an important milk production centre, and to examine the risk factors such as purchasing cattle, increasing cattle age, cattle breed and herd size associated with transmission of BLV infection. To estimate the rate of BLV infection, a survey for specific antibodies in 28,982 serum samples from animals belonging to 1116 different herds situated in Central Anatolia Region of Turkey were tested from January 2006 to December 2013.

View Article and Find Full Text PDF

Quantitative determination of the density and conformation of DNA molecules tethered to the surface can help optimize and understand DNA nanosensors and nanodevices, which use conformational or motional changes of surface-immobilized DNA for detection or actuation. We present an interferometric sensing platform that combines (i) dual-color fluorescence spectroscopy for precise axial co-localization of two fluorophores attached at different nucleotides of surface-immobilized DNA molecules and (ii) independent label-free quantification of biomolecule surface density at the same site. Using this platform, we examined the conformation of DNA molecules immobilized on a three-dimensional polymeric surface and demonstrated simultaneous detection of DNA conformational change and binding in real-time.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on two types of Canine Adenovirus (CAV) causing diseases in dogs: CAV-1 (infectious hepatitis) and CAV-2 (laryngotracheitis).
  • Researchers analyzed blood samples from 111 dogs with clinical symptoms and 77 shelter dogs, revealing systemic illness signs like fever and cough.
  • Serological tests showed a high prevalence of CAV antibodies in 54.7% of the samples, but direct virus isolation from cell cultures yielded no positive results, highlighting a significant presence of CAV infection.
View Article and Find Full Text PDF

Stimuli responsive, smart interface materials are integrated with microfluidic technologies creating new functions for a broad range of biological and clinical applications by controlling the material and cell interactions. Local capture and on-demand local release of cells are demonstrated with spatial and temporal control in a microfluidic system.

View Article and Find Full Text PDF