Publications by authors named "Oguz Sebik"

The objective of this study was to construct peristimulus time histogram (PSTH) and peristimulus frequencygram (PSF) using single motor unit recordings to further characterize the previously documented immediate sensorimotor effects of spinal manipulation. Single pulse transcranial magnetic stimulation (TMS) via a double cone coil over the tibialis anterior (TA) motor area during weak isometric dorsiflexion of the foot was used on two different days in random order; pre/post spinal manipulation (in eighteen subjects) and pre/post a control (in twelve subjects) condition. TA electromyography (EMG) was recorded with surface and intramuscular fine wire electrodes.

View Article and Find Full Text PDF

We examined the reflex response of the human masseter muscle to electrical stimulation of the lip using both single motor unit and surface electromyogram based methods. Using the classical analysis methods, reflex response to mild electrical stimuli generated two distinct short-lasting inhibitions. This pattern may reflect the development of combinations of short- and long-latency inhibitory postsynaptic potentials as a result of the mildly painful electrical lip stimulation.

View Article and Find Full Text PDF

Purpose: To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV).

Materials And Methods: This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used.

View Article and Find Full Text PDF

Painful stimulation of the hand results in an inhibitory response in the hand muscles known as the cutaneous silent period (CSP). In this study, we employed probability- and frequency-based analysis methods to examine the CSP induced by laser stimuli. Subjects were asked to contract their first dorsal interosseous muscle so that selected motor units discharged at a rate of about 8Hz.

View Article and Find Full Text PDF

In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate whether reflex responses from whole-body vibration (WBV) can be understood as stretch-induced reflexes, focusing on the muscular reflex known as WBV-IMR.
  • Researchers tested 20 healthy males by comparing the latency of a muscle's tendon reflex (T-reflex) with the reflex latency of WBV-IMR, using surface electrodes on the right soleus muscle.
  • Results showed that WBV-IMR had a longer latency than T-reflex, and simulations indicated that the frequency of muscle stretch during WBV is twice that of the vibration, suggesting WBV-IMR cannot be explained by stretch-induced reflex theory.
View Article and Find Full Text PDF

Key Points: Reflex responses of single motor units have been used for the study of spinal circuitries but the methods employed are invasive and limited to the assessment of a relatively small number of motor units. We propose a new approach to investigate reflexes on individual motor units based on high-density surface electromyography (HDsEMG) decomposition. The decomposition of HDsEMG has been previously validated in voluntary isometric contractions but never during reflex activities.

View Article and Find Full Text PDF

High rate stimulations of the neuromuscular system, such as continuous whole body vibration, tonic vibration reflex and high frequency electrical stimulation, are used in the physiological research with an increasing interest. In these studies, the neuronal circuitries underlying the reflex responses remain unclear due to the problem of determining the exact reflex latencies. We present a novel "cumulated average method" to determine the reflex latency during high rate stimulation of the nervous system which was proven to be significantly more accurate than the classical method.

View Article and Find Full Text PDF

The electrical activity of muscles can interfere with the electroencephalogram (EEG) signal considering the anatomical locations of facial or masticatory muscles surrounding the skull. In this study, we evaluated the possible interference of the resting activity of the temporalis muscle on the EEG under conventional EEG recording conditions. In 9 healthy adults EEG activity from 19 scalp locations and single motor unit (SMU) activity from anterior temporalis muscle were recorded in three relaxed conditions; eyes open, eyes closed, jaw dropped.

View Article and Find Full Text PDF

Double discharges (doublets) were recorded from human soleus (SOL), where they have never been reported before. The data analyzed in this study were collected from 12 healthy volunteers. The subjects were recruited for other studies, concerning: (1) estimation of motoneurons' (MNs) afterhyperpolarization (AHP) duration and (2) analysis of motor unit responses to nerve stimulation, and were not trained to voluntarily evoke doublets.

View Article and Find Full Text PDF

Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units.

View Article and Find Full Text PDF

Platelets are subjected to extremely low frequency electromagnetic fields during standard aggregometry measurements owing to the use of a magnetic stir bar in the instrument. This study evaluates the effects of this magnetic field exposure on platelet aggregation by comparing the results obtained in a modified aggregometer. Blood samples from healthy volunteers were anticoagulated using citrate or heparin.

View Article and Find Full Text PDF

The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers.

View Article and Find Full Text PDF

Purpose: Electromagnetic fields have various effects on intracellular calcium levels, free oxygen radicals and various enzymes. The platelet activation pathway involves an increase in intracellular calcium levels and protein kinase C activation; and free oxygen radicals play a mediating role in this pathway. This study investigated whether 1 mT and 6 mT, 50 Hz magnetic fields had any effects on platelet aggregation.

View Article and Find Full Text PDF