Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human.
View Article and Find Full Text PDFCurrent methods of dose determination have contributed to suboptimal and inequitable health outcomes in underrepresented patient populations. The persistent demand to individualise patient treatment, alongside increasing technological feasibility, is leading to a growing adoption of model-informed precision dosing (MIPD) at point of care. Population pharmacokinetic (popPK) modelling is a technique that supports treatment personalisation by characterising drug exposure in diverse patient groups.
View Article and Find Full Text PDFBackground: Preclinical models of cancer can be of translational benefit when assessing how different biomarkers are regulated in response to particular treatments. Detection of molecular biomarkers in preclinical models of cancer is difficult due inter-animal variability in responses, combined with limited accessibility of longitudinal data.
Methods: Nonlinear mixed-effects modelling (NLME) was used to analyse tumour growth data based on expected tumour growth rates observed 7 days after initial doses (DD7) of Radiotherapy (RT) and Combination of RT with DNA Damage Response Inhibitors (DDRi).
Introduction: Population pharmacokinetic studies of β-lactam antimicrobials in critically ill patients derive models that inform their dosing. In non-linear mixed-effects modelling, covariates are often used to improve model fit and explain variability. We aimed to investigate which covariates are most commonly assessed and which are found to be significant, along with global patterns of publication.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
November 2023
Prediction of hepatic clearance of drugs (via uptake or metabolism) from in vitro systems continues to be problematic, particularly when plasma protein binding is high. The following work explores simultaneous assessment of both clearance processes, focusing on a commercial hepatocyte-fibroblast co-culture system (HREL) over a 24-hour period using six probe drugs (ranging in metabolic and transporter clearance and low-to-high plasma protein binding). A rat hepatocyte co-culture assay was established using drug depletion (measuring both medium and total concentrations) and cell uptake kinetic analysis, both in the presence and absence of plasma protein (1% bovine serum albumin).
View Article and Find Full Text PDFClinical trials assessing the impact of radiotherapy (RT) in combination with DNA damage response pathway inhibitors (DDRis) and/or immune checkpoint blockade are currently ongoing. However, current methods for optimizing dosage and schedule are limited. A mathematical model was developed to capture the impacts of RT in combination with DDRi and/or anti-PD-L1 [immune checkpoint inhibitor (ICI)] on tumor immune interactions in the MC38 syngeneic tumor model.
View Article and Find Full Text PDFBackground And Objective: Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by insufficient levels of survival motor neuron (SMN) protein. Risdiplam (Evrysdi) increases SMN protein and is approved for the treatment of SMA. Risdiplam has high oral bioavailability and is primarily eliminated through hepatic metabolism by flavin-containing monooxygenase3 (FMO3) and cytochrome P450 (CYP) 3A, by 75% and 20%, respectively.
View Article and Find Full Text PDFGadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
March 2023
Whole-body physiologically-based pharmacokinetic (PBPK) models have many applications in drug research and development. It is often necessary to inform these models with animal or clinical data, updating model parameters, and making the model more predictive for future applications. This provides an opportunity and a challenge given the large number of parameters of such models.
View Article and Find Full Text PDFSimplified physiologically based pharmacokinetic (PBPK) models using estimated tissue-to-unbound plasma partition coefficients (Kpus) were previously investigated by fitting them to in vivo pharmacokinetic (PK) data. After optimization with preclinical data, the performance of these models for extrapolation of distribution kinetics to human were evaluated to determine the best approach for the prediction of human drug disposition and volume of distribution (Vss) using PBPK modeling. Three lipophilic bases were tested (diazepam, midazolam, and basmisanil) for which intravenous PK data were available in rat, monkey, and human.
View Article and Find Full Text PDFCoproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe).
View Article and Find Full Text PDFDrug development for the central nervous system (CNS) is a complex endeavour with low success rates, as the structural complexity of the brain and specifically the blood-brain barrier (BBB) poses tremendous challenges. Several in vitro brain systems have been evaluated, but the ultimate use of these data in terms of translation to human brain concentration profiles remains to be fully developed. Thus, linking up in vitro-to-in vivo extrapolation (IVIVE) strategies to physiologically based pharmacokinetic (PBPK) models of brain is a useful effort that allows better prediction of drug concentrations in CNS components.
View Article and Find Full Text PDFRisdiplam (Evrysdi) improves motor neuron function in patients with spinal muscular atrophy (SMA) and has been approved for the treatment of patients ≥2 months old. Risdiplam exhibits time-dependent inhibition of cytochrome P450 (CYP) 3A in vitro. While many pediatric patients receive risdiplam, a drug-drug interaction (DDI) study in pediatric patients with SMA was not feasible.
View Article and Find Full Text PDFPhysiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2).
View Article and Find Full Text PDFAim: To quantify the utility of a terminal-phase adjusted area under the concentration curve method in increasing the probability of a correct and conclusive outcome of a bioequivalence (BE) trial for highly variable drugs when clearance (CL) varies more than the volume of distribution (V).
Methods: Data from a large population of subjects were generated with variability in CL and V, and used to simulate a two-period, two-sequence crossover BE trial. The 90% confidence interval for formulation comparison was determined following BE assessment using the area under the concentration curve (AUC) ratio test, and the proposed terminal-phase adjusted AUC ratio test.
Background: Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE.
View Article and Find Full Text PDFRenal clearance of many drugs is mediated by renal organic anion transporters OAT1/3 and inhibition of these transporters may lead to drug-drug interactions (DDIs). Pyridoxic acid (PDA) and homovanillic acid (HVA) were indicated as potential biomarkers of OAT1/3. The objective of this study was to develop a population pharmacokinetic model for PDA and HVA to support biomarker qualification.
View Article and Find Full Text PDFIn the last update of the RECIST criteria in 2009, it was proposed that the number of target lesions to be followed over time for response-to-treatment assessment be reduced from 10 to 5 lesions maximum, with up to 2 per organ. We explored the impact of reducing the number of target lesion on the assessment of drug effect in a randomised phase III clinical trial using a tumour growth inhibition (TGI) model. Tumour size measurements from 441 (out of 456) patients were used to build two datasets for which observations were the sum of longest diameters of all measurable lesions (ALL dataset) or following the RECIST 1.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
February 2021
Coproporphyrin I (CPI) is an endogenous biomarker of OATP1B activity and associated drug-drug interactions. In this study, a minimal physiologically-based pharmacokinetic model was developed to investigate the impact of OATP1B1 genotype (c.521T>C), ethnicity, and sex on CPI pharmacokinetics and interindividual variability in its baseline.
View Article and Find Full Text PDFClinical assessment of drug-drug interactions (DDIs) in children is not a common practice in drug development. Therefore, physiologically-based pharmacokinetic (PBPK) modeling can be beneficial for informing drug labeling. Using ivabradine and its metabolite (both cytochrome P450 3A4 enzyme (CYP3A4) substrates), the objectives were (i) to scale ivabradine-metabolite adult PBPK/PD to pediatrics, (ii) to predict the DDIs with a strong CYP3A4 inhibitor, and (iii) to compare the sensitivity of children to DDIs using two CYP3A4 hepatic ontogeny functions: Salem and Upreti.
View Article and Find Full Text PDFAims: Chemotherapy-induced neutropenia has been associated with an increase in overall survival in non-small cell lung cancer patients. Therefore, neutrophil counts could be an interesting biomarker for drug efficacy as well as linked directly to toxicity. For drugs where neutropenia is dose limiting, neutrophil counts might be used for monitoring drug effect and for dosing optimisation.
View Article and Find Full Text PDFModel-informed precision dosing (MIPD) has become synonymous with modern approaches for individualizing drug therapy, in which the characteristics of each patient are considered as opposed to applying a one-size-fits-all alternative. This review provides a brief account of the current knowledge, practices, and opinions on MIPD while defining an achievable vision for MIPD in clinical care based on available evidence. We begin with a historical perspective on variability in dose requirements and then discuss technical aspects of MIPD, including the need for clinical decision support tools, practical validation, and implementation of MIPD in health care.
View Article and Find Full Text PDF