Purpose: The reconstruction of dura matter is a challenging problem for neurosurgeons. A number of materials for dural reconstruction have recently been developed, but some of them have poor biocompatibility, poor mechanical properties, and adverse effects. Bovine parietal peritoneum is a promising natural material for regenerative medicine and reconstructive surgery.
View Article and Find Full Text PDFChronic wounds complicated by infection pose significant clinical challenges, necessitating comprehensive treatment approaches. The widespread use of antibiotics has led to resistant microorganisms, complicating traditional therapies. This study aims to develop and evaluate modified alginate wound dressings with enhanced antimicrobial and regenerative properties.
View Article and Find Full Text PDFThe repair of critical-sized calvarial defects is a challenging problem for orthopedic surgery. One of the promising strategies of bone bioengineering to enhance the efficacy of large bone defect regeneration is the combined delivery of stem cells with osteoinductive factors within polymer carriers. The purpose of the research was to study the regenerative effects of heparin-conjugated fibrin (HCF) hydrogel containing bone morphogenetic protein 2 (BMP-2) and adipose-derived pericytes (ADPs) in a rat critical-sized calvarial defect model.
View Article and Find Full Text PDFIntroduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has had an unprecedented impact on people around the world, particularly those who were suffering from autoimmune rheumatic diseases (AIRDs). The world community acknowledges the significance of COVID-19 vaccination in patients with autoimmune disorders and emphasizes the priority of this category to receive vaccination over the general population. Although many studies have been published since the first phases of vaccination all over the world, multiple related factors still need to be further investigated.
View Article and Find Full Text PDFPericytes, as perivascular cells, are present in all vascularized organs and tissues, and they actively interact with endothelial cells in capillaries and microvessels. Their involvement includes functions like blood pressure regulation, tissue regeneration, and scarring. Studies have confirmed that pericytes play a crucial role in bone tissue regeneration through direct osteodifferentiation processes, paracrine actions, and vascularization.
View Article and Find Full Text PDFis a valuable pharmacopoeial Kazakhstani plant. Several studies have reported on the various biological activities of the plant. The purpose of our research was to study and compare the extraction yields, immunomodulatory activities, and chemical compositions of extracts from the above-ground parts of obtained via conventional extraction (CE; Extract 1) and ultrasound-assisted extraction (UAE; Extract 2).
View Article and Find Full Text PDFAtherosclerosis (AS) is an inflammatory disease involving multiple factors in its initiation and development. In recent years, the potential application of mesenchymal stem cells (MSCs) for treating AS has been investigated. This study examined the effect of TNF-α preconditioning on MSCs' therapeutic efficacy in treating AS in ApoE KO mice.
View Article and Find Full Text PDFIn vivo biotinylation using wild-type and mutants of biotin ligases is now widely applied for the study of cellular proteomes. The commercial availability of kits for the highly efficient purification of biotinylated proteins and their excellent compatibility with LC-MS/MS protocols are the main reasons for the choice of biotin ligases. Since they are all enzymes, however, just a very low expression in cells is required for experiments.
View Article and Find Full Text PDFThe regeneration of cartilage and osteochondral defects remains one of the most challenging clinical problems in orthopedic surgery. Currently, tissue-engineering techniques based on the delivery of appropriate growth factors and mesenchymal stem cells (MSCs) in hydrogel scaffolds are considered as the most promising therapeutic strategy for osteochondral defects regeneration. In this study, we fabricated a heparin-conjugated fibrin (HCF) hydrogel with synovium-derived mesenchymal stem cells (SDMSCs), transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-4 (BMP-4) to repair osteochondral defects in a rabbit model.
View Article and Find Full Text PDFMedicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from the L.
View Article and Find Full Text PDFConsidering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells.
View Article and Find Full Text PDFCryogels are a unique macroporous material for tissue engineering. In this work, we study the effect of hyaluronic acid on the physicochemical properties of cryogel as well as on the proliferation of a 3D model of mesenchymal stem cells. The functional groups of the synthesized cryogels were identified using Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFHomogeneous and xenogenic bioengineering structures are actively used as wound coatings in treatment of burns and have already shown their effectiveness. Nevertheless, the disadvantage of such dressings is their high cost. This issue is particularly challenging for developing countries in which the incidence of burns is the highest one.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is a promising technology to establish a 3D in vitro hepatic model that holds great potential in toxicological evaluation. However, in current hepatic models, the central area suffers from hypoxic conditions, resulting in slow and weak metabolism of drugs and toxins. It remains challenging to predict accurate drug effects in current bioprinted hepatic models.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
October 2021
Atherosclerosis is a multifactorial and complex disease involving the arterial intima of the circulatory system. The main risk factors of atherosclerosis are diabetes mellitus, hypertension, hyperlipidemic states, smoking, mental stress, unhealthy diet, and a lack of physical activity. Recent studies have shown that dyslipidemia, inflammation and immune cells are involved in all stages of the development of atherosclerosis.
View Article and Find Full Text PDFDespite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage.
View Article and Find Full Text PDFPericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting.
View Article and Find Full Text PDFBiomechanical properties of mammalian bones, such as strength, toughness, and plasticity, are essential for understanding how microscopic-scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) microspectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins, and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free modality for probing viscoelastic properties of tissues that can give information on structure-function properties of normal and pathological tissues.
View Article and Find Full Text PDFIntroduction: The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation.
Results: At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris.
Mesenchymal stem cells (MSCs) have attracted the attention of researchers and clinicians for their ability to differentiate into a number of cell types, participate in tissue regeneration, and repair the damaged tissues by producing various growth factors and cytokines, as well as their unique immunoprivilege in alloreactive hosts. The immunomodulatory functions of exogenous MSCs have been widely investigated in immune-mediated inflammatory diseases and transplantation research. However, a harsh environment at the site of tissue injury/inflammation with insufficient oxygen supply, abundance of reactive oxygen species, and presence of other harmful molecules that damage the adoptively transferred cells collectively lead to low survival and engraftment of the transferred cells.
View Article and Find Full Text PDFIntroduction: Trophic ulcers are a common health problem, and there are numerous treatment methods. Irreversible damage in the skin, subcutaneous tissue, and fascia with long-term ulcer existence make standard autotransplantation inneffective. Skin grafts are often complicated by partial or complete rejection of skin flaps.
View Article and Find Full Text PDFCent Asian J Glob Health
January 2014
Introduction: Cell-based immunotherapy has been given increased attention as a treatment for cancer. Human natural killer (NK) cells are resident lymphocyte populations. They exhibit potent antitumor activity without human leukocyte antigen matching and without prior antigen exposure.
View Article and Find Full Text PDFIntroduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits.
Material And Methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek).