Publications by authors named "Oft M"

Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells induce durable responses in patients with refractory hematological tumors. However, low CAR T cell activity, poor engraftment, or short in-patient persistence can lead to tumor progression or relapse. Furthermore, excessive CAR T cell expansion and activation can result in life-threatening cytokine release syndrome (CRS).

View Article and Find Full Text PDF

Background Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited and checkpoint blockade inhibitors have been disappointing in this disease. Pegilodecakin has demonstrated single agent anti-tumor activity in immune-sensitive tumors. Phase 1 and preclinical data indicate synergy of pegilodecakin with 5-FU and platins.

View Article and Find Full Text PDF

The expansion and activation of tumor antigen reactive CD8 T cells are primary goals of immunotherapies for cancer. IL-10 is an anti-inflammatory cytokine with an essential role in the development and proliferation of regulatory T cells, restricting myeloid and chronic inflammatory T cell responses. However, IL-10 is also essential for the expansion of antigen activated, tumor specific CD8 T cells, leading to spontaneous tumor development in IL-10 deficient patients and mice.

View Article and Find Full Text PDF

Background: IL-10 has anti-inflammatory and CD8+ T-cell stimulating activities. Pegilodecakin (pegylated IL-10) is a first-in-class, long-acting IL-10 receptor agonist that induces oligoclonal T-cell expansion and has single-agent activity in advanced solid tumours. We assessed the safety and activity of pegilodecakin with anti-PD-1 monoclonal antibody inhibitors in patients with advanced solid tumours.

View Article and Find Full Text PDF

Anemia in cancer patients is associated with poor quality of life, reduced response to therapy, and decreased overall survival. We describe a case of a 56-year old woman with advanced metastatic non-small cell lung carcinoma who demonstrated marked response to a novel combinational immunotherapy approach involving a long-acting PEGylated construct of recombinant human Interleukin-10 with Nivolumab, an anti-PD-L1 checkpoint inhibitor. While on treatment, the patient developed severe anemia and hyper-ferritinemia requiring RBC transfusion support.

View Article and Find Full Text PDF

Purpose Of Review: Interleukin-10 (IL-10) is a cytokine with anti-inflammatory properties, which induces activation and proliferation of antigen-activated intratumoral CD8+ T cells. This review discusses the evolution of pegylated IL-10 (pegilodecakin) from preclinical investigation through first-in-human studies in oncology.

Recent Findings: Pegilodecakin was evaluated across multiple advanced solid tumors in a large phase 1/1b trial alone and in combination with chemotherapy or anti-PD-1 antibodies.

View Article and Find Full Text PDF

Tumor-reactive T cell exhaustion prevents the success of immune therapies. Pegilodecakin activates intratumoral CD8 T cells in mice and induces objective tumor responses in patients. Here we report that pegilodecakin induces hallmarks of CD8 T cell immunity in cancer patients, including elevation of interferon-γ and GranzymeB, expansion and activation of intratumoral CD8 T cells, and proliferation and expansion of LAG-3 PD-1 CD8 T cells.

View Article and Find Full Text PDF

Purpose Interleukin-10 (IL-10) stimulates the expansion and cytotoxicity of tumor-infiltrating CD8+ T cells and inhibits inflammatory CD4+ T cells. Pegylation prolongs the serum concentration of IL-10 without changing the immunologic profile. This phase I study sought to determine the safety and antitumor activity of AM0010.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) exerts both immunosuppressive and immunostimulatory effects. While the immunosuppressive effects are widely known, it has only been recently reported that pegylated recombinant human IL-10 (PEG-rHuIL-10) elicits potent interferon-γ (IFN-γ) and CD8 T-cell-dependent antitumor effects in murine tumor models. In this study, we show that PEG-rHuIL-10 exerts immune inhibitory effects on human peripheral blood mononuclear cell (PBMC) bulk cultures and stimulatory effects in CD8 T cells within the same culture.

View Article and Find Full Text PDF

Human cancer is characterized by deficits in antigen-specific immunity and intratumoral CD8(+) T cells. On the other hand, inflammatory macrophages and mediators of chronic inflammation are highly prevalent in patients with late-stage cancer. Intratumoral T-cell deficiency and chronic inflammation have been linked independently to a poor prognosis in patients with cancer, and therapeutic approaches to overcome either pathology separately are in clinical testing.

View Article and Find Full Text PDF

Recently, the development of several strategies based on immunotherapy has raised hopes for a more promising way to treat cancer patients. Here, we describe how interleukin (IL)-10, a seemingly unlikely candidate, stimulates the immune system in a particularly efficacious way. IL-10, an omnipotent anti-inflammatory cytokine, delivers an equally potent immune stimulation in the context of CD8(+) T cells and tumor immunity.

View Article and Find Full Text PDF

Successful cancer immunotherapy is thought to require de novo priming of tumor specific CD8(+) T cells in lymphatic organs. Contrasting these beliefs, cancer therapy based on interleukin-10 (IL-10) results in tumor rejection without a requirement for T-cell trafficking from lymphatic organs. Rather, IL-10 directly activates autochthonous, tumor-resident CD8(+) T cells.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) is considered to be an immunosuppressive cytokine. However, the continuous administration of pegylated IL-10 (PEG-IL10) leads to the rejection of large, firmly established and metastatic syngeneic tumors. PEG-IL10 therapy induces the expansion and activation of intratumoral, tumor antigen-specific CD8(+) T cells, leading to interferon γ (IFNγ)-mediated Th1 like immunity and tumor rejection.

View Article and Find Full Text PDF

The role of regulatory T cells (T(regs)) in human colon cancer (CC) remains controversial: high densities of tumor-infiltrating T(regs) can correlate with better or worse clinical outcomes depending on the study. In mouse models of cancer, T(regs) have been reported to suppress inflammation and protect the host, suppress T cells and protect the tumor, or even have direct cancer-promoting attributes. These different effects may result from the presence of different T(reg) subsets.

View Article and Find Full Text PDF

The presence of activated intratumoral T cells correlates clinically with better prognosis in patients with cancer. Although tumor vaccines can increase the number of tumor-specific CD8(+) T cells in systemic circulation, they frequently fail to increase the number of active and tumor reactive T cells within the tumor. Here we show that treatment with the pleiotropic cytokine interleukin-10 (IL-10) induces specific activation of tumor-resident CD8(+) T cells as well as their intratumoral expansion in several mouse tumor models.

View Article and Find Full Text PDF

Tumor immune surveillance and cancer immunotherapies are thought to depend on the intratumoral infiltration of activated CD8(+) T cells. Intratumoral CD8(+) T cells are rare and lack activity. IL-10 is thought to contribute to the underlying immune suppressive microenvironment.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC(50) values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters.

View Article and Find Full Text PDF

Tumor immune surveillance and CD8+ T cells in particular appear capable of recognizing the antigenic properties of human tumor cells. However, those antigen specific T cells are often excluded from tumor tissue or are functionally limited in their cytotoxic capacity. Instead, the immune response provides proinflammatory cytokines and proteases promoting tumor growth and progression while subverting cytotoxic anti-tumor immunity.

View Article and Find Full Text PDF

IL-23 is an important molecular driver of Th17 cells and has strong tumor-promoting proinflammatory activity postulated to occur via adaptive immunity. Conversely, more recently it has been reported that IL-17A elicits a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. Here we show the much broader impact of IL-23 in antagonizing antitumor immune responses primarily mediated by innate immunity.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a potent natural adjuvant, commonly used to amplify Th1 responses. Here, we report that systemic immunization using LPS generates large numbers of specific Th17 cells in murine small intestinal lamina propria. The priming of these Th17 cells required IL-23p19 production by bone marrow-derived cells.

View Article and Find Full Text PDF

During the last decade, it has become clear that the mammalian immune system is able to recognize and partially suppress nascent tumors. Human T cells specific to oncogenes and onco-fetal antigens are present in human cancer patients and their tumors. At the same time, molecular links between tumor-associated inflammation and tumor progression have been uncovered, providing an explanation for the long recognized epidemiological link between inflammation and cancer.

View Article and Find Full Text PDF

During tumorigenesis, selective pressure drives tumor cells to develop several strategies that enable growth and propagation. Transformed cells produce or elicit factors that provide growth signals, nutrients and a favorable tumor microenvironment. In addition, tumor cells can evade elimination by the immune system by several mechanisms, including developing resistance to T cell-induced apoptosis or the local expression of immune-modulatory molecules and cytokines.

View Article and Find Full Text PDF