Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, , when grown on xyloglucan.
View Article and Find Full Text PDFGH127 and GH146 microorganismal retaining β-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both GH146 and HypBA1 are inhibited by β-l-furanosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of β-l-furanosyl cyclophellitol epoxides and aziridines as mechanism-based GH146/HypBA1 inhibitors and activity-based probes.
View Article and Find Full Text PDFAcid β-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-β-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease.
View Article and Find Full Text PDFIn confirmatory clinical trials, it has been proposed to use a simple iterative graphical approach to construct and perform intersection hypotheses tests with a weighted Bonferroni-type procedure to control Type I errors in the strong sense. Given Phase II study results or other prior knowledge, it is usually of main interest to find the optimal graph that maximizes a certain objective function in a future Phase III study. In this article, we evaluate the performance of two existing derivative-free constrained methods, and further propose a deep learning enhanced optimization framework.
View Article and Find Full Text PDF-β-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of -β-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds.
View Article and Find Full Text PDFGaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA.
View Article and Find Full Text PDFThere is a vast genomic resource for enzymes active on carbohydrates. Lagging far behind, however, are functional chemical tools for the rapid characterization of carbohydrate-active enzymes. Activity-based probes (ABPs) offer one chemical solution to these issues with ABPs based upon cyclophellitol epoxide and aziridine covalent and irreversible inhibitors representing a potent and widespread approach.
View Article and Find Full Text PDFGlycosidase inhibitors have shown great potential as pharmacological chaperones for lysosomal storage diseases. In light of this, a series of new cyclopentanoid β-galactosidase inhibitors were prepared and their inhibitory and pharmacological chaperoning activities determined and compared with those of lipophilic analogs of the potent β-d-galactosidase inhibitor 4--isofagomine. Structure-activity relationships were investigated by X-ray crystallography as well as by alterations in the cyclopentane moiety such as deoxygenation and replacement by fluorine of a "strategic" hydroxyl group.
View Article and Find Full Text PDFFluorinated sugar-1-phosphates are of emerging importance as intermediates in the chemical and biocatalytic synthesis of modified oligosaccharides, as well as probes for chemical biology. Here we present a systematic study of the activity of a wide range of anomeric sugar kinases (galacto- and N-acetylhexosamine kinases) against a panel of fluorinated monosaccharides, leading to the first examples of polyfluorinated substrates accepted by this class of enzymes. We have discovered four new N-acetylhexosamine kinases with a different substrate scope, thus expanding the number of homologs available in this subclass of kinases.
View Article and Find Full Text PDFCorrection for 'Synthesis and application of a highly branched, mechanism-based 2-deoxy-2-fluoro-oligosaccharide inhibitor of endo-xyloglucanases' by Namrata Jain et al., Org. Biomol.
View Article and Find Full Text PDFThe elucidation and prediction of how changes in a protein result in altered activities and selectivities remain a major challenge in chemistry. Two hurdles have prevented accurate family-wide models: obtaining (i) diverse datasets and (ii) suitable parameter frameworks that encapsulate activities in large sets. Here, we show that a relatively small but broad activity dataset is sufficient to train algorithms for functional prediction over the entire glycosyltransferase superfamily 1 (GT1) of the plant Arabidopsis thaliana.
View Article and Find Full Text PDFXyloglucan (XyG) is a complex polysaccharide that is ubiquitous and often abundant in the cell walls of terrestrial plants. XyG metabolism is therefore a key component of the global carbon cycle, and hence XyG enzymology is of significant fundamental and applied importance in biomass conversion. To facilitate structure-function analyses of XyG-specific endo-glucanases, we have synthesized a 2',4'-dinitrophenyl 2-deoxy-2-fluoro-β-glycoside mechanism-based inhibitor based on the highly branched XyG repeating motif XXXG (Xyl3Glc4: ([α-d-Xylp-(1→6)]-β-d-Glcp-(1→4)-[α-d-Xylp-(1→6)]-β-d-Glcp-(1→4)-[α-d-Xylp-(1→6)]-β-d-Glcp-(1→4)-d-Glcp.
View Article and Find Full Text PDFMultiplicity adjustment plays a critical role for testing multiple endpoints and/or multiple doses in clinical trials. Under the clinical trial setting, multiple hypotheses are usually grouped into primary and secondary families and hierarchically ordered between and within families. The determination of the order and grouping of the hypotheses depends on the objectives of the trial.
View Article and Find Full Text PDFGluco-azoles competitively inhibit glucosidases by transition-state mimicry and their ability to interact with catalytic acid residues in glucosidase active sites. We noted that no azole-type inhibitors described, to date, possess a protic nitrogen characteristic for 1 H-imidazoles. Here, we present gluco-1 H-imidazole, a gluco-azole bearing a 1 H-imidazole fused to a glucopyranose-configured cyclitol core, and three close analogues as new glucosidase inhibitors.
View Article and Find Full Text PDFBackground: Xyloglucan (XyG) is a ubiquitous and fundamental polysaccharide of plant cell walls. Due to its structural complexity, XyG requires a combination of backbone-cleaving and sidechain-debranching enzymes for complete deconstruction into its component monosaccharides. The soil saprophyte has emerged as a genetically tractable model system to study biomass saccharification, in part due to its innate capacity to utilize a wide range of plant polysaccharides for growth.
View Article and Find Full Text PDFActivity-based protein profiling has emerged as a powerful tool for visualizing glycosidases in complex biological samples. Several configurational cyclophellitol isomers have been shown to display high selectivity as probes for glycosidases processing substrates featuring the same configuration. Here, a set of deoxygenated cyclophellitols are presented which enable inter-class profiling of β-glucosidases and β-galactosidases.
View Article and Find Full Text PDFThe essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors.
View Article and Find Full Text PDFThe conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine-both covalent retaining β-glucosidase inhibitors-we postulated that the corresponding carba "cyclopropyl" analogue would be a potent retaining β-glucosidase inhibitor for those enzymes reacting through the H transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the H conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (K = 8.
View Article and Find Full Text PDFO-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.
View Article and Find Full Text PDFMany new experimental treatments benefit only a subset of the population. Identifying the baseline covariate profiles of patients who benefit from such a treatment, rather than determining whether or not the treatment has a population-level effect, can substantially lessen the risk in undertaking a clinical trial and expose fewer patients to treatments that do not benefit them. The standard analyses for identifying patient subgroups that benefit from an experimental treatment either do not account for multiplicity, or focus on testing for the presence of treatment-covariate interactions rather than the resulting individualized treatment effects.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
February 2016
The industrial conversion of cellulosic plant biomass into useful products such as biofuels is a major societal goal. These technologies harness diverse plant degrading enzymes, classical exo- and endo-acting cellulases and, increasingly, cellulose-active lytic polysaccharide monooxygenases, to deconstruct the recalcitrant β-D-linked polysaccharide. A major drawback with this process is that the exo-acting cellobiohydrolases suffer from severe inhibition from their cellobiose product.
View Article and Find Full Text PDFMultiplicity control is an important statistical issue in clinical trials where strong control of the type I error rate is required. Many multiple testing methods have been proposed and applied to address multiplicity issues in clinical trials. This paper provides an application oriented and comprehensive overview of commonly used multiple testing procedures and recent developments in statistical methodology in multiple testing in clinical trials.
View Article and Find Full Text PDFAn invited panel session was conducted in the 2012 Joint Statistical Meetings, San Diego, California, USA, to stimulate the discussion on multiplicity issues in confirmatory clinical trials for drug development. A total of 11 expert panel members were invited and 9 participated. Prior to the session, a case study was previously provided to the panel members to facilitate the discussion, focusing on the key components of the study design and multiplicity.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
January 2015
The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof.
View Article and Find Full Text PDF