Publications by authors named "Oertzen T"

An overwhelming majority of articles in psychology compare means, often between multiple groups. However, sometimes we do not know the exact group membership, but only a probability to be in one of the groups. Such information may come from classifiers trained on other datasets, prevalence of group memberships for some parts of the sample, multi-level situations where the group membership is only known as a ratio in an upper level, or expert ratings (e.

View Article and Find Full Text PDF

Longitudinal data collection is a time-consuming and cost-intensive part of developmental research. Wu et al. (2016) discussed planned missing (PM) designs that are similar in efficiency to complete designs but require fewer observations per person.

View Article and Find Full Text PDF

Background: Bayesian clustering algorithms, in particular those utilizing Dirichlet Processes (DP), return a sample of the posterior distribution of partitions of a set. However, in many applied cases a single clustering solution is desired, requiring a 'best' partition to be created from the posterior sample. It is an open research question which solution should be recommended in which situation.

View Article and Find Full Text PDF

The conventional statistical methods to detect group differences assume correct model specification, including the origin of difference. Researchers should be able to identify a source of group differences and choose a corresponding method. In this paper, we propose a new approach of group comparison without model specification using classification algorithms in machine learning.

View Article and Find Full Text PDF

We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris (1985) were used to evaluate the power to detect slope covariances. Even with large samples (N = 500) and several longitudinal occasions (4 or 5), statistical power to detect covariance of slopes was moderate to low unless growth curve reliability at study onset was above .

View Article and Find Full Text PDF