Publications by authors named "Oelsner S"

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells represent a promising effector cell type for adoptive cancer immunotherapy. Both, genetically modified donor-derived NK cells as well as continuously expanding NK-92 cells are currently under clinical development. To enhance their therapeutic utility for the treatment of pre-B-cell acute lymphoblastic leukemia (B-ALL), we engineered NK-92 cells by lentiviral gene transfer to express a FMS-like tyrosine kinase 3 (FLT3)-specific CAR that contains a composite CD28-CD3ζ signaling domain.

View Article and Find Full Text PDF

Pediatric patients with recurrent, refractory or advanced soft tissue sarcoma (STS) who are simultaneously showing signs of cumulative treatment toxicity are in need of novel therapies. In this preclinical analysis, we identified ErbB2 as a targetable antigen on STS cells and used cytokine-induced killer (CIK) cells transduced with the lentiviral 2-generation chimeric antigen receptor (CAR) vector pS-5.28.

View Article and Find Full Text PDF

Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated.

View Article and Find Full Text PDF

Background Aims: Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications.

Methods: To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.

View Article and Find Full Text PDF

Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach.

View Article and Find Full Text PDF

Background Aims: Human cytomegalovirus (CMV) infection and reactivation is a leading complication of allogeneic hematopoietic stem cell transplantation (HSCT). In addition to drug treatment, the adoptive transfer of virus-specific T cells to restore cellular immunity has become a standard therapy after allogeneic HSCT. We recently demonstrated potent anti-leukemic activity of interleukin (IL)-15-activated cytokine-induced killer (CIK) cells.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment option for high-risk hematological malignancies, and may also be offered to patients with solid malignancies refractory to conventional therapies. In case of patients' relapse, refractory tumor cells may then be targeted by cellular therapy-based combination strategies. Here, we investigated the potential of small molecule IAP (SMAC mimetic) BV6 in increasing cytokine-induced killer (CIK) cell-mediated cytotoxicity against different tumor targets.

View Article and Find Full Text PDF

Background: Drug handling in paediatric intensive care units (PICU) is prone to medication errors. We aimed to identify type and prevalence of those errors and to assess preventative interventions.

Methods: Prospective intervention study investigating a 3-step intervention for preventing errors in drug handling in a 10-bed PICU of a university hospital.

View Article and Find Full Text PDF