Objective: North Sea Progressive Myoclonus Epilepsy (NS-PME) is a rare genetic disorder characterized by ataxia, myoclonus and seizures with a progressive course. Although the cause of NS-PME is known, namely a homozygous mutation in the GOSR2 gene (c.430 G>T; p.
View Article and Find Full Text PDFStudies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.
View Article and Find Full Text PDFCoenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis.
View Article and Find Full Text PDFThe pantothenate analogue hopantenate (HoPan) is widely used as a modulator of coenzyme A (CoA) levels in cell biology and disease models─especially for pantothenate kinase associated neurodegeneration (PKAN), a genetic disease rooted in impaired CoA metabolism. This use of HoPan was based on reports that it inhibits pantothenate kinase (PanK), the first enzyme of CoA biosynthesis. Using a combination of enzyme kinetic studies, crystal structure analysis, and experiments in a typical PKAN cell biology model, we demonstrate that instead of inhibiting PanK, HoPan relies on it for metabolic activation.
View Article and Find Full Text PDFCoenzyme A (CoA) is a key molecule in cellular metabolism including the tricarboxylic acid cycle, fatty acid synthesis, amino acid synthesis and lipid metabolism. Moreover, CoA is required for biological processes like protein post-translational modifications (PTMs) including acylation. CoA levels affect the amount of histone acetylation and thereby modulate gene expression.
View Article and Find Full Text PDFProgrammed cell death and consecutive removal of cellular remnants is essential for development. During late stages of oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death.
View Article and Find Full Text PDFProgressive myoclonic epilepsies (PMEs) comprise a group of rare disorders of different genetic aetiologies, leading to childhood-onset myoclonus, myoclonic seizures and subsequent neurological decline. One of the genetic causes for PME, a mutation in the gene coding for Golgi SNAP receptor 2 (GOSR2), gives rise to a PME-subtype prevalent in Northern Europe and hence referred to as North Sea Progressive Myoclonic Epilepsy (NS-PME). Treatment for NS-PME, as for all PME subtypes, is symptomatic; the pathophysiology of NS-PME is currently unknown, precluding targeted therapy.
View Article and Find Full Text PDFCoenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps.
View Article and Find Full Text PDFTemperature influences the physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance.
View Article and Find Full Text PDFBackground: Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF.
View Article and Find Full Text PDFCoenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available.
View Article and Find Full Text PDFChorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified.
View Article and Find Full Text PDFThe consensus has been that intracellular coenzyme A (CoA) is obtained exclusively by de novo biosynthesis via a universal, conserved five-step pathway in the cell cytosol. However, old and new evidence suggest that cells (and some microorganisms) have several strategies to obtain CoA, with 4'-phosphopantetheine (P-PantSH; the fourth intermediate in the canonical CoA biosynthetic pathway) serving as a 'nexus' metabolite.
View Article and Find Full Text PDFDuring aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins.
View Article and Find Full Text PDFSpinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 () gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3.
View Article and Find Full Text PDFIncreasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin.
View Article and Find Full Text PDFThe metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA.
View Article and Find Full Text PDFIn all organisms biomolecules play a vital role to enable proper cellular metabolism. Alteration of metabolite homoeostasis disrupts the physiology of cells, leading to various diseases [DeBerardinis and Thompson (2012) Cell, 148, 1132-1144]. Recent studies advances our understanding that some metabolites are not only involved in cellular metabolism, but also have other molecular functions.
View Article and Find Full Text PDFIn 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions.
View Article and Find Full Text PDFMutations in the orphan gene C19orf12 were identified as a genetic cause in a subgroup of patients with NBIA, a neurodegenerative disorder characterized by deposits of iron in the basal ganglia. C19orf12 was shown to be localized in mitochondria, however, nothing is known about its activity and no functional link exists to the clinical phenotype of the patients. This situation led us to investigate the effects of C19orf12 down-regulation in the model organism Drosophila melanogaster.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models.
View Article and Find Full Text PDFElevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death.
View Article and Find Full Text PDFCoenzyme A (CoA) is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK), which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood.
View Article and Find Full Text PDF