Publications by authors named "Odile Sainte Catherine"

Fucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7.

View Article and Find Full Text PDF

Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary. Chemokines and microRNAs (miR) were studied as pro-angiogenic agents.

View Article and Find Full Text PDF

Fibrosis is characterized by a pathologic deposition of collagen I, leading to impaired function of organs. Tissue biopsy is the gold standard method for the diagnosis of fibrosis but this is an invasive procedure, subject to sampling errors. Several non-invasive techniques such as magnetic resonance imaging (MRI) using non-specific probes have been developed but they are not fully satisfying as they allow diagnosis at a late stage.

View Article and Find Full Text PDF

Nanoparticle (NP) administration is among the most attractive approaches to exploit the synergy of different copackaged molecules for the same target. In this work, iron oxide NPs are surface-engineered for the copackaging of the autoantigen proinsulin, a major target of adaptive immunity in type 1 diabetes (T1D), and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methylester (ITE), a small drug conditioning a tolerogenic environment. Magnetic resonance imaging (MRI) combined with magnetic quantification are used to investigate NP biokinetics in nonobese diabetic (NOD) mice and control mice in different organs.

View Article and Find Full Text PDF

This paper describes the preparation and the biological evaluation of α-halogenated oxaphosphinanes. These halogen derivatives were synthetized from a short and stereoselective synthetic sequence starting by previously described hydroxy-precursors 1 and 2 with respectively a glucose and mannose-like configuration. The in vitro biological tests of these unnatural halogenated phosphinosugars, on several cell lines, highlighted, for some of them, their antiproliferative and anti migration and invasion properties at nanomolar concentration.

View Article and Find Full Text PDF

This paper reports the design and synthesis of C-glycoside mimetics (d-glycero-d-talo- and d-glycero-d-galactopyranose analogues), a subset of the recently published phostines, belonging to the [1,2]oxaphosphinane core. Eighteen new compounds were tested against 11 cancer cell types belonging to six categories of tumor tissues and three different species. The hit compound 5.

View Article and Find Full Text PDF

We investigated the biological effects of new synthesized bisphosphonates (BPs) on HuH7 hepatocarcinoma cells. BPs containing p-bromophenyl (R1 = p-Br, Ph, 2) in their side chain were the more potent to inhibit HuH7 cell viability. In addition, phenyl diesterified analogues (R2 = R3 = Ph, 2a) were more potent than methyl (R2 = R3 = Me, 2b) or non-esterified BPs (2) inducing more necrosis suggesting that they better entered into cells.

View Article and Find Full Text PDF

Bisphosphonates (BPs) have interesting antitumor effects as well in vitro as in vivo, despite their poor bioavailability in the organism after oral ingestion. To overcome this problem and reduce drug doses and secondary effects, we report the chemical synthesis of new bioconjugates. They were built with a nitrogen-containing BP as the drug covalently coupled to the carboxymethyldextran.

View Article and Find Full Text PDF

This paper reports the design and the synthesis of a new family of compounds, the phostines, belonging to the [1,2]oxaphosphinane family. Twenty-six compounds have been screened for their antiproliferative activity against a large panel of NCI cancer cell lines. Because of its easy synthesis and low EC(50) value (500 nM against the C6 rat glioma cell line), compound 3.

View Article and Find Full Text PDF

Introduction: The poor efficacy of various anti-cancer treatments against metastatic cells has focused attention on the role of tumor microenvironment in cancer progression. To understand the contribution of the extracellular matrix (ECM) environment to this phenomenon, we isolated ECM surrogate invading cell populations from MDA-MB-231 breast cancer cells and studied their genotype and malignant phenotype.

Methods: We isolated invasive subpopulations (INV) from non invasive populations (REF) using a 2D-Matrigel assay, a surrogate of basal membrane passage.

View Article and Find Full Text PDF

Zosterin, an apiose-rich pectic polysaccharide, was extracted and purified from the sea grass Zostera marina. Structural studies conducted by gas chromatography and NMR spectroscopy on a purified zosterin fraction (AGU) revealed a typical apiogalacturonan structure comprising an alpha-1,4-d-galactopyranosyluronan backbone substituted by 1,2-linked apiofuranose oligosaccharides and single apiose residues. The average molecular mass of AGU was estimated to be about 4100 Da with a low polydispersity.

View Article and Find Full Text PDF

Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated in vitro on cancer cell lines (MDA-MB-231, U87-MG and Caco2). After chemical synthesis, this water-soluble molecule was encapsulated into liposomes containing DOPC:DOPG:Chol (72:27:1 molar ratio).

View Article and Find Full Text PDF

We elaborate a magnetic nanovector to vectorize Zoledronate, an anti-cancer interest molecule of the hydroxmethylenebisphosphonate's family. In fact, Zoledronate is a powerful adjuvant in the treatment of bone diseases such as osteoporosis and Paget's disease. But, recent studies have shown that in addition to anti-osteoclastic properties, it presents antitumour properties notably in the case of breast and prostate cancer.

View Article and Find Full Text PDF

Background: Although there was growing evidence in the potential use of Bisphosphonates (BPs) in cancer therapy, their strong osseous affinities that contrast their poor soft tissue uptake limited their use. Here, we developed a new strategy to overcome BPs hydrophilicity by masking the phosphonic acid through organic protecting groups and introducing hydrophobic functions in the side chain.

Methodology/principal Findings: We synthesized non-nitrogen BPs (non N-BPs) containing bromobenzyl group (BP7033Br) in their side chain that were symmetrically esterified with hydrophobic 4-methoxphenyl (BP7033BrALK) and assessed their effects on breast cancer estrogen-responsive cells (T47D, MCF-7) as well as on non responsive ones (SKBR3, MDA-MB-231 and its highly metastatic derived D3H2LN subclone).

View Article and Find Full Text PDF

Xylans were purified from delignified holocellulose alkaline extracts of Castanea sativa (Spanish chestnut) and Argania spinosa (Argan tree) and their structures analyzed by means of GC of their per-trimethylsilylated methylglycoside derivatives and (1)H NMR spectroscopy. The structures deduced were characteristic of a 4-O-methylglucuronoxylan (MGX) and a homoxylan (HX), respectively, with degrees of polymerization ranging from 182 to 360. In the case of MGX, the regular or random distribution of 4-O-methylglucuronic acid along the xylosyl backbone--determined by MALDI mass spectrometry after autohydrolysis of the polysaccharide--varied and depended both on the botanical source from which they were extracted and on the xylan extraction procedure.

View Article and Find Full Text PDF

The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

View Article and Find Full Text PDF

The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

View Article and Find Full Text PDF

The CC-chemokine regulated on activation, normal T-cell expressed, and presumably secreted (RANTES)/CCL5 mediates its biological activities through activation of G protein-coupled receptors, CCR1, CCR3, or CCR5, and binds to glycosaminoglycans. This study was undertaken to investigate whether this chemokine is involved in hepatoma cell migration or invasion and to modulate these effects in vitro by the use of glycosaminoglycan mimetics. We show that the human hepatoma Huh7 and Hep3B cells express RANTES/CCL5 G protein-coupled receptor CCR1 but not CCR3 nor CCR5.

View Article and Find Full Text PDF

The capsular polysaccharide produced by the thermophilic blue green alga/cyanobacterium Mastigocladus laminosus was tested for its cytotoxic activity against the A431 human epidermoid carcinoma cell line. This polysaccharide inhibited the proliferation of A431 cells in a dose-dependent manner with an IC (50) value of 50 microg mL (-1). In addition, this polysaccharide strongly inhibited A431 cell migration and invasion.

View Article and Find Full Text PDF

Introduction: Investigation of the role of vascular endothelial growth factor-C (VEGF-C) and VEGF receptor-3 (VEGFR-3) in non-small-cell lung cancer (NSCLC) has mainly focused on lymph node (LN) metastasis related to lymphangiogenesis. However, the coexpression of VEGF-C/VEGFR-3 by tumour cells can independently play an important role. The present study was therefore designed to evaluate VEGF-C/VEGFR-3 coexpression in tumour cells from the primary tumour and corresponding LN metastases.

View Article and Find Full Text PDF

In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The aim of this study was to determine whether the chemokine stromal cell-derived factor 1 (SDF-1) induces the growth, migration, and invasion of human hepatoma cells. We show that SDF-1 G protein-coupled receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), and SDF-1 mRNA are expressed in human hepatoma Huh7 cells, which secrete and bind SDF-1.

View Article and Find Full Text PDF

A glucuronoxylan was purified from a delignified holocellulose alkaline extract of Castanea sativa (Spanish chestnut) and its structure analyzed by means of FT-IR, GC of the per-trimethylsilylated methylglycoside derivatives, and 1H and 13C NMR spectroscopy. The results supported a structure based on a linear polymer of xylopyranose units linked with beta(1-->4) bonds in which, on average, one out of every six units is substituted at C-2 by a 4-O-methylglucuronic acid unit; this structure is typical of a hardwood acidic 4-O-methylglucuronoxylan (MGX) with an estimated degree of polymerization of 200. The MGX from C.

View Article and Find Full Text PDF

Bisphosphonates are extensively used in the treatment of patients with metastasis-induced osteolysis. The major drawback in the efficacy of all bisphosphonates lies in their high hydrophilic nature, which results in poor membrane permeability and low availability for soft tissues. A reasonable approach to overcome these problems consists in masking one or more ionizable groups of bisphosphonates, notably by esterification of the hydroxyl functions.

View Article and Find Full Text PDF